86 research outputs found

    LapG, Required for Modulating Biofilm Formation by Pseudomonas fluorescens Pf0-1, Is a Calcium-Dependent Protease

    Get PDF
    Biofilm formation by Pseudomonas fluorescens Pf0-1 requires the cell surface adhesin LapA. We previously reported that LapG, a periplasmic cysteine protease of P. fluorescens, cleaves the N terminus of LapA, thus releasing this adhesin from the cell surface and resulting in loss of the ability to make a biofilm. The activity of LapG is regulated by the inner membrane-localized cyclic-di-GMP receptor LapD via direct protein-protein interactions. Here we present chelation and metal add-back studies demonstrating that calcium availability regulates biofilm formation by P. fluorescens Pf0-1. The determination that LapG is a calcium-dependent protease, based on in vivo and in vitro studies, explains the basis of this calcium-dependent regulation. Based on the crystal structure of LapG of Legionella pneumophila in the accompanying report by Chatterjee and colleagues (D. Chatterjee et al., J. Bacteriol. 194:4415–4425, 2012), we show that the calcium-binding residues of LapG, D134 and E136, which are near the critical C135 active-site residue, are required for LapG activity of P. fluorescens in vivo and in vitro. Furthermore, we show that mutations in D134 and E136 result in LapG proteins no longer able to interact with LapD, indicating that calcium binding results in LapG adopting a conformation competent for interaction with the protein that regulates its activity. Finally, we show that citrate, an environmentally relevant calcium chelator, can impact LapG activity and thus biofilm formation, suggesting that a physiologically relevant chelator of calcium can impact biofilm formation by this organism

    Structural Characterization of a Conserved, Calcium-Dependent Periplasmic Protease from Legionella pneumophila

    Get PDF
    The bacterial dinucleotide second messenger c-di-GMP has emerged as a central molecule in regulating bacterial behavior, including motility and biofilm formation. Proteins for the synthesis and degradation of c-di-GMP and effectors for its signal transmission are widely used in the bacterial domain. Previous work established the GGDEF-EAL domain-containing receptor LapD as a central switch in Pseudomonas fluorescens cell adhesion. LapD senses c-di-GMP inside the cytosol and relays this signal to the outside by the differential recruitment of the periplasmic protease LapG. Here we identify the core components of an orthologous system in Legionella pneumophila. Despite only moderate sequence conservation at the protein level, key features concerning the regulation of LapG are retained. The output domain of the LapD-like receptor from L. pneumophila, CdgS9, binds the LapG ortholog involving a strictly conserved surface tryptophan residue. While the endogenous substrate for L. pneumophila LapG is unknown, the enzyme processed the corresponding P. fluorescens substrate, indicating a common catalytic mechanism and substrate recognition. Crystal structures of L. pneumophila LapG provide the first atomic models of bacterial proteases of the DUF920 family and reveal a conserved calcium-binding site important for LapG function

    The Inhibitory Site of a Diguanylate Cyclase Is a Necessary Element for Interaction and Signaling with an Effector Protein

    Get PDF
    Many bacteria contain large cyclic diguanylate (c-di-GMP) signaling networks made of diguanylate cyclases (DGCs) and phosphodiesterases that can direct cellular activities sensitive to c-di-GMP levels. While DGCs synthesize c-di-GMP, many DGCs also contain an autoinhibitory site (I-site) that binds c-di-GMP to halt excess production of this small molecule, thus controlling the amount of c-di-GMP available to bind to target proteins in the cell. Many DGCs studied to date have also been found to signal for a specific c-di-GMP-related process, and although recent studies have suggested that physical interaction between DGCs and target proteins may provide this signaling fidelity, the importance of the I-site has not yet been incorporated into this model. Our results from Pseudomonas fluorescens indicate that mutation of residues at the I-site of a DGC disrupts the interaction with its target receptor. By creating various substitutions to a DGC\u27s I-site, we show that signaling between a DGC (GcbC) and its target protein (LapD) is a combined function of the I-site-dependent protein-protein interaction and the level of c-di-GMP production. The dual role of the I-site in modulating DGC activity as well as participating in protein-protein interactions suggests caution in interpreting the function of the I-site as only a means to negatively regulate a cyclase. These results implicate the I-site as an important positive and negative regulatory element of DGCs that may contribute to signaling specificity

    Cyclic Di-GMP-Regulated Periplasmic Proteolysis of a Pseudomonas aeruginosa Type Vb Secretion System Substrate

    Get PDF
    We previously identified a second-messenger-regulated signaling system in the environmental bacterium Pseudomonas fluorescens which controls biofilm formation in response to levels of environmental inorganic phosphate. This system contains the transmembrane cyclic di-GMP (c-di-GMP) receptor LapD and the periplasmic protease LapG. LapD regulates LapG and controls the ability of this protease to process a large cell surface adhesin protein, LapA. While LapDG orthologs can be identified in divers

    Phosphorylation-Independent Regulation of the Diguanylate Cyclase WspR

    Get PDF
    Environmental signals that trigger bacterial pathogenesis and biofilm formation are mediated by changes in the level of cyclic dimeric guanosine monophosphate (c-di-GMP), a unique eubacterial second messenger. Tight regulation of cellular c-di-GMP concentration is governed by diguanylate cyclases and phosphodiesterases, which are responsible for its production and degradation, respectively. Here, we present the crystal structure of the diguanylate cyclase WspR, a conserved GGDEF domain-containing response regulator in Gram-negative bacteria, bound to c-di-GMP at an inhibitory site. Biochemical analyses revealed that feedback regulation involves the formation of at least three distinct oligomeric states. By switching from an active to a product-inhibited dimer via a tetrameric assembly, WspR utilizes a novel mechanism for modulation of its activity through oligomerization. Moreover, our data suggest that these enzymes can be activated by phosphodiesterases. Thus, in addition to the canonical pathways via phosphorylation of the regulatory domains, both product and enzyme concentration contribute to the coordination of c-di-GMP signaling. A structural comparison reveals resemblance of the oligomeric states to assemblies of GAF domains, widely used regulatory domains in signaling molecules conserved from archaea to mammals, suggesting a similar mechanism of regulation

    Die Reaktivierung von Schienenstrecken als Strategie der integrierten Raumentwicklung: Chancen nutzen und Hemmnisse überwinden

    Get PDF
    Der Ausbau von Schienennetzen für den Personen- und Güterverkehr durch die Reaktivierung stillgelegter Strecken ist ein Gebot der Stunde! Schienenstrecken ermöglichen nachhaltige Mobilität, gesellschaftliche Teilhabe und die Schaffung gleichwertiger Lebensverhältnisse. Hierzu bedarf es einer grundsätzlich neuen und integrierten Ausrichtung der Raum- und Verkehrsplanung. Neben der dringend gebotenen Trassensicherung durch die Raumordnung müssen stillgelegte Schienenstrecken bezüglich ihrer Potenziale für die Orts- und Regionalentwicklung erkannt und reaktiviert werden. Stationen an Schienenstrecken können insbesondere in ländlichen Räumen wesentliche Entwicklungsimpulse erzeugen und als Mobilitätsdrehscheiben fungieren. Dabei gilt es, bisherige Hindernisse zu überwinden, indem beispielsweise neue volkswirtschaftliche Bewertungsmaßstäbe angesetzt und neue Finanzierungsmodelle eingeführt werden.The expansion of rail networks for passenger and cargo services by reactivating disused rail lines is an urgent need of the hour! Rail lines enable sustainable mobility, social participation and the creation of equal living conditions. This requires a fundamentally new and integrated approach to spatial and transport planning. In addition to the urgent need to secure routes by means of spatial planning, disused railway lines must be recognized with regard to their potential for local and regional development and be reactivated. Stations on railway lines can generate significant development impulses, particularly in rural areas, and act as mobility hubs. Previous obstacles must be overcome, for example by applying new economic evaluation standards and introducing new financing models

    Circular Permutation of Red Fluorescent Proteins

    Get PDF
    Circular permutation of fluorescent proteins provides a substrate for the design of molecular sensors. Here we describe a systematic exploration of permutation sites for mCherry and mKate using a tandem fusion template approach. Circular permutants retaining more than 60% (mCherry) and 90% (mKate) brightness of the parent molecules are reported, as well as a quantitative evaluation of the fluorescence from neighboring mutations. Truncations of circular permutants indicated essential N- and C- terminal segments and substantial flexibility in the use of these molecules. Structural evaluation of two cp-mKate variants indicated no major conformational changes from the previously reported wild-type structure, and cis conformation of the chromophores. Four cp-mKates were identified with over 80% of native fluorescence, providing important new building blocks for sensor and complementation experiments
    corecore