8 research outputs found

    Contribution of Gut Bacteria to Liver Pathobiology

    Get PDF
    Emerging evidence suggests a strong interaction between the gut microbiota and health and disease. The interactions of the gut microbiota and the liver have only recently been investigated in detail. Receiving approximately 70% of its blood supply from the intestinal venous outflow, the liver represents the first line of defense against gut-derived antigens and is equipped with a broad array of immune cells (i.e., macrophages, lymphocytes, natural killer cells, and dendritic cells) to accomplish this function. In the setting of tissue injury, whereby the liver is otherwise damaged (e.g., viral infection, toxin exposure, ischemic tissue damage, etc.), these same immune cell populations and their interactions with the infiltrating gut bacteria likely contribute to and promote these pathologies. The following paper will highlight recent studies investigating the relationship between the gut microbiota, liver biology, and pathobiology. Defining these connections will likely provide new targets for therapy or prevention of a wide variety of acute and chronic liver pathologies

    Inhibition of phosphatidylinositol 3-kinase signaling in hepatic stellate cells blocks the progression of hepatic fibrosis

    Get PDF
    The hepatic stellate cell (HSC) is the primary cell type in the liver responsible for excess collagen deposition during fibrosis. Following a fibrogenic stimulus, the cell changes from a quiescent vitamin A storing cell to an activated cell type associated with increased extracellular matrix synthesis and increased cell proliferation. The phosphatidylinositol 3-kinase (PI3K) signaling pathway has been shown to regulate several aspects of HSC activation in vitro, including collagen synthesis and cell proliferation. Using a targeted approach to inhibit PI3K signaling specifically in HSCs, we investigated the role of PI3K in HSCs using a rodent model of hepatic fibrosis. An adenovirus expressing a dominant negative form of PI3K under control of the smooth muscle α-actin (αSMA) promoter was generated (Ad-SMAdnPI3K). Transducing HSCs with Ad-SMAdnPI3K resulted in decreased proliferation, migration, collagen expression, and several additional profibrogenic genes, while also promoting cell death. Inhibition of PI3K signaling was also associated with reduced activation of Akt, p70S6K, and extracellular regulated kinase (ERK) signaling as well as reduced cyclin D1 expression. Administering Ad-SMAdnPI3K to mice following bile duct ligation resulted in reduced HSC activation and decreased extracellular matrix deposition, including collagen expression. A reduction in profibrogenic mediators, including tumor growth factor – β (TGF-β), tissue inhibitor of metalloproteinase – 1 (TIMP-1), and connective tissue growth factor (CTGF) was also noted. However, liver damage, assessed by alanine aminotransferase (ALT) levels, was not reduced

    Smad3 signaling in the regenerating liver: implications for the regulation of IL-6 expression

    Get PDF
    Liver regeneration is vital for graft survival and adequate organ function. Smad activation regulates hepatocyte proliferation and macrophage function. Aim of the current study is to evaluate the impact of Smad3 signaling during liver regeneration in the mouse

    Oncostatin M Gene Therapy Attenuates Liver Damage Induced by Dimethylnitrosamine in Rats

    No full text
    To assess the usefulness of oncostatin M (osm) gene therapy in liver regeneration, we examined whether the introduction of OSM cDNA enhances the regeneration of livers damaged by dimethylnitrosamine (DMN) in rats. Repeated injection of OSM cDNA enclosed in hemagglutinating virus of Japan envelope into the spleen resulted in the exclusive expression of OSM protein in Kupffer cells of the liver, which was accompanied by increases in body weight, liver weight, and serum albumin levels and the reduction of serum liver injury parameters (bilirubin, aspartate aminotransferase, and alanine aminotransferase) and a serum fibrosis parameter (hyaluronic acid). Histological examination showed that osm gene therapy reduced centrilobular necrosis and inflammatory cell infiltration and augmented hepatocyte proliferation. The apoptosis of hepatocytes and fibrosis were suppressed by osm gene therapy. Time-course studies on osm gene therapy before or after DMN treatment showed that this therapy was effective not only in enhancing regeneration of hepatocytes damaged by DMN but in preventing hepatic cytotoxicity caused by subsequent treatment with DMN. These results indicate that OSM is a key mediator for proliferation and anti-apoptosis of hepatocytes and suggest that osm gene therapy is useful, as preventive and curative means, for the treatment of patients with liver damage
    corecore