18,538 research outputs found
Elimination of redundancy in telemetered data
Procedure for estimating the intensity of a Poisson process can be readily programmed for a digital computer, and does not require an a priori probability space. Reduction of the sampling rate is possible without sacrificing significant information
Answer Sets for Logic Programs with Arbitrary Abstract Constraint Atoms
In this paper, we present two alternative approaches to defining answer sets
for logic programs with arbitrary types of abstract constraint atoms (c-atoms).
These approaches generalize the fixpoint-based and the level mapping based
answer set semantics of normal logic programs to the case of logic programs
with arbitrary types of c-atoms. The results are four different answer set
definitions which are equivalent when applied to normal logic programs. The
standard fixpoint-based semantics of logic programs is generalized in two
directions, called answer set by reduct and answer set by complement. These
definitions, which differ from each other in the treatment of
negation-as-failure (naf) atoms, make use of an immediate consequence operator
to perform answer set checking, whose definition relies on the notion of
conditional satisfaction of c-atoms w.r.t. a pair of interpretations. The other
two definitions, called strongly and weakly well-supported models, are
generalizations of the notion of well-supported models of normal logic programs
to the case of programs with c-atoms. As for the case of fixpoint-based
semantics, the difference between these two definitions is rooted in the
treatment of naf atoms. We prove that answer sets by reduct (resp. by
complement) are equivalent to weakly (resp. strongly) well-supported models of
a program, thus generalizing the theorem on the correspondence between stable
models and well-supported models of a normal logic program to the class of
programs with c-atoms. We show that the newly defined semantics coincide with
previously introduced semantics for logic programs with monotone c-atoms, and
they extend the original answer set semantics of normal logic programs. We also
study some properties of answer sets of programs with c-atoms, and relate our
definitions to several semantics for logic programs with aggregates presented
in the literature
Thermal Pions ns Isospin Chemical Potential Effects
The density corrections, in terms of the isospin chemical potential ,
to the mass of the pions are investigated in the framework of the SU(2) low
energy effective chiral invariant lagrangian. As a function of temperature and
, the mass remains quite stable, starting to grow for very high
values of , confirming previous results. However, the dependence for a
non-vanishing chemical potential turns out to be much more dramatic. In
particular, there are interesting corrections to the mass when both effects
(temperature and chemical potential) are simultaneously present. At zero
temperature the should condensate when .
This is not longer valid anymore at finite . The mass of the
acquires also a non trivial dependence on at finite .Comment: 5 pages, 2 figures. To appear in the proceedings of the International
High-Energy Physics Conference on Quantum Chromodynamics QCD02, Montpellier,
2-9 July (2002
An Analysis of the Search Spaces for Generate and Validate Patch Generation Systems
We present the first systematic analysis of the characteristics of patch
search spaces for automatic patch generation systems. We analyze the search
spaces of two current state-of-the-art systems, SPR and Prophet, with 16
different search space configurations. Our results are derived from an analysis
of 1104 different search spaces and 768 patch generation executions. Together
these experiments consumed over 9000 hours of CPU time on Amazon EC2.
The analysis shows that 1) correct patches are sparse in the search spaces
(typically at most one correct patch per search space per defect), 2) incorrect
patches that nevertheless pass all of the test cases in the validation test
suite are typically orders of magnitude more abundant, and 3) leveraging
information other than the test suite is therefore critical for enabling the
system to successfully isolate correct patches.
We also characterize a key tradeoff in the structure of the search spaces.
Larger and richer search spaces that contain correct patches for more defects
can actually cause systems to find fewer, not more, correct patches. We
identify two reasons for this phenomenon: 1) increased validation times because
of the presence of more candidate patches and 2) more incorrect patches that
pass the test suite and block the discovery of correct patches. These
fundamental properties, which are all characterized for the first time in this
paper, help explain why past systems often fail to generate correct patches and
help identify challenges, opportunities, and productive future directions for
the field
Logic Programming for Finding Models in the Logics of Knowledge and its Applications: A Case Study
The logics of knowledge are modal logics that have been shown to be effective
in representing and reasoning about knowledge in multi-agent domains.
Relatively few computational frameworks for dealing with computation of models
and useful transformations in logics of knowledge (e.g., to support multi-agent
planning with knowledge actions and degrees of visibility) have been proposed.
This paper explores the use of logic programming (LP) to encode interesting
forms of logics of knowledge and compute Kripke models. The LP modeling is
expanded with useful operators on Kripke structures, to support multi-agent
planning in the presence of both world-altering and knowledge actions. This
results in the first ever implementation of a planner for this type of complex
multi-agent domains.Comment: 16 pages, 1 figure, International Conference on Logic Programming
201
Comments on "The Role of the Central Asian Mountains on the Midwinter Suppression of North Pacific Storminess" - Reply
We thank Chang and Lin for their thoughtful and
constructive comments on our study (Park et al. 2010).
In Park et al. (2010), we did not explicitly state that the
topography-forced stationary waves are the direct cause
for the reduced downstream transient eddy kinetic energy
(EKE). The response of stationary waves to topography
may saturate even with a relatively small mountain (Cook
and Held 1992); furthermore, their magnitudes are much
smaller than thermally forced stationary waves (Chang
2009; Held et al. 2002). Instead, we suggest that quasistationary waves generated by the central Asian mountains may strongly affect North Pacific storminess by
changing the year-to-year variability of westerly winds
over the eastern Eurasian continent. Observational analyses
indicate that the midwinter suppression of North
Pacific storminess does not occur every year. Some years
experience stronger and more meridionally confined
zonal winds over the western North Pacific, leading to
stronger midwinter suppression (Harnik and Chang
2004; Nakamura and Sampe 2002)
Classical stability of U(1)_A domain walls in dense matter QCD
It was recently shown that there exists metastable U(1)_A domain wall
configurations in high-density QCD (\mu >> 1 GeV). In the following we will
assess the stability of such non-trivial field configurations at intermediate
densities (\mu < 1 GeV). The existence of such configurations at intermediate
densities could have interesting consequences for the physics of neutron stars
with high core density.Comment: 13 pages, 2 Postscript figures, typos correcte
- …