18,538 research outputs found

    Elimination of redundancy in telemetered data

    Get PDF
    Procedure for estimating the intensity of a Poisson process can be readily programmed for a digital computer, and does not require an a priori probability space. Reduction of the sampling rate is possible without sacrificing significant information

    Answer Sets for Logic Programs with Arbitrary Abstract Constraint Atoms

    Full text link
    In this paper, we present two alternative approaches to defining answer sets for logic programs with arbitrary types of abstract constraint atoms (c-atoms). These approaches generalize the fixpoint-based and the level mapping based answer set semantics of normal logic programs to the case of logic programs with arbitrary types of c-atoms. The results are four different answer set definitions which are equivalent when applied to normal logic programs. The standard fixpoint-based semantics of logic programs is generalized in two directions, called answer set by reduct and answer set by complement. These definitions, which differ from each other in the treatment of negation-as-failure (naf) atoms, make use of an immediate consequence operator to perform answer set checking, whose definition relies on the notion of conditional satisfaction of c-atoms w.r.t. a pair of interpretations. The other two definitions, called strongly and weakly well-supported models, are generalizations of the notion of well-supported models of normal logic programs to the case of programs with c-atoms. As for the case of fixpoint-based semantics, the difference between these two definitions is rooted in the treatment of naf atoms. We prove that answer sets by reduct (resp. by complement) are equivalent to weakly (resp. strongly) well-supported models of a program, thus generalizing the theorem on the correspondence between stable models and well-supported models of a normal logic program to the class of programs with c-atoms. We show that the newly defined semantics coincide with previously introduced semantics for logic programs with monotone c-atoms, and they extend the original answer set semantics of normal logic programs. We also study some properties of answer sets of programs with c-atoms, and relate our definitions to several semantics for logic programs with aggregates presented in the literature

    Thermal Pions ns Isospin Chemical Potential Effects

    Full text link
    The density corrections, in terms of the isospin chemical potential μI\mu_I, to the mass of the pions are investigated in the framework of the SU(2) low energy effective chiral invariant lagrangian. As a function of temperature and μI=0\mu_I =0, the mass remains quite stable, starting to grow for very high values of TT, confirming previous results. However, the dependence for a non-vanishing chemical potential turns out to be much more dramatic. In particular, there are interesting corrections to the mass when both effects (temperature and chemical potential) are simultaneously present. At zero temperature the π±\pi ^{\pm} should condensate when μI=∓mπ\mu_{I} = \mp m_{\pi}. This is not longer valid anymore at finite TT. The mass of the π0\pi_0 acquires also a non trivial dependence on μI\mu_I at finite TT.Comment: 5 pages, 2 figures. To appear in the proceedings of the International High-Energy Physics Conference on Quantum Chromodynamics QCD02, Montpellier, 2-9 July (2002

    An Analysis of the Search Spaces for Generate and Validate Patch Generation Systems

    Get PDF
    We present the first systematic analysis of the characteristics of patch search spaces for automatic patch generation systems. We analyze the search spaces of two current state-of-the-art systems, SPR and Prophet, with 16 different search space configurations. Our results are derived from an analysis of 1104 different search spaces and 768 patch generation executions. Together these experiments consumed over 9000 hours of CPU time on Amazon EC2. The analysis shows that 1) correct patches are sparse in the search spaces (typically at most one correct patch per search space per defect), 2) incorrect patches that nevertheless pass all of the test cases in the validation test suite are typically orders of magnitude more abundant, and 3) leveraging information other than the test suite is therefore critical for enabling the system to successfully isolate correct patches. We also characterize a key tradeoff in the structure of the search spaces. Larger and richer search spaces that contain correct patches for more defects can actually cause systems to find fewer, not more, correct patches. We identify two reasons for this phenomenon: 1) increased validation times because of the presence of more candidate patches and 2) more incorrect patches that pass the test suite and block the discovery of correct patches. These fundamental properties, which are all characterized for the first time in this paper, help explain why past systems often fail to generate correct patches and help identify challenges, opportunities, and productive future directions for the field

    Logic Programming for Finding Models in the Logics of Knowledge and its Applications: A Case Study

    Full text link
    The logics of knowledge are modal logics that have been shown to be effective in representing and reasoning about knowledge in multi-agent domains. Relatively few computational frameworks for dealing with computation of models and useful transformations in logics of knowledge (e.g., to support multi-agent planning with knowledge actions and degrees of visibility) have been proposed. This paper explores the use of logic programming (LP) to encode interesting forms of logics of knowledge and compute Kripke models. The LP modeling is expanded with useful operators on Kripke structures, to support multi-agent planning in the presence of both world-altering and knowledge actions. This results in the first ever implementation of a planner for this type of complex multi-agent domains.Comment: 16 pages, 1 figure, International Conference on Logic Programming 201

    Comments on "The Role of the Central Asian Mountains on the Midwinter Suppression of North Pacific Storminess" - Reply

    Get PDF
    We thank Chang and Lin for their thoughtful and constructive comments on our study (Park et al. 2010). In Park et al. (2010), we did not explicitly state that the topography-forced stationary waves are the direct cause for the reduced downstream transient eddy kinetic energy (EKE). The response of stationary waves to topography may saturate even with a relatively small mountain (Cook and Held 1992); furthermore, their magnitudes are much smaller than thermally forced stationary waves (Chang 2009; Held et al. 2002). Instead, we suggest that quasistationary waves generated by the central Asian mountains may strongly affect North Pacific storminess by changing the year-to-year variability of westerly winds over the eastern Eurasian continent. Observational analyses indicate that the midwinter suppression of North Pacific storminess does not occur every year. Some years experience stronger and more meridionally confined zonal winds over the western North Pacific, leading to stronger midwinter suppression (Harnik and Chang 2004; Nakamura and Sampe 2002)

    Classical stability of U(1)_A domain walls in dense matter QCD

    Full text link
    It was recently shown that there exists metastable U(1)_A domain wall configurations in high-density QCD (\mu >> 1 GeV). In the following we will assess the stability of such non-trivial field configurations at intermediate densities (\mu < 1 GeV). The existence of such configurations at intermediate densities could have interesting consequences for the physics of neutron stars with high core density.Comment: 13 pages, 2 Postscript figures, typos correcte
    • …
    corecore