9,085 research outputs found
New challenges in studying nutrition-disease interactions in the developing world.
Latest estimates indicate that nutritional deficiencies account for 3 million child deaths each year in less-developed countries. Targeted nutritional interventions could therefore save millions of lives. However, such interventions require careful optimization to maximize benefit and avoid harm. Progress toward designing effective life-saving interventions is currently hampered by some serious gaps in our understanding of nutrient metabolism in humans. In this Personal Perspective, we highlight some of these gaps and make some proposals as to how improved research methods and technologies can be brought to bear on the problems of undernourished children in the developing world
Abnormal synaptic pruning during adolescence underlying the development of psychotic disorders
PURPOSE OF REVIEW: Excessive synaptic pruning has first been suggested by Irwin Feinberg (1982) as an important pillar in the pathophysiology in schizophrenia (SCZ). This article reviews recent developments highlighting factors implicated in aberrant synaptic pruning and its contribution to disease onset and emergence of cognitive symptoms in SCZ. Unraveling these factors provides new insights for potential prevention and treatment strategies for psychotic disorders. RECENT FINDINGS: Increased pruning in SCZ was recently confirmed by a positron emission tomography-study employing the novel tracer [11C]UCB-J, demonstrating the consequential loss of synaptic density. Recent evidence supports the contributing role of astrocytes and increased complement-mediated microglial pruning in disease onset and cognitive symptoms in SCZ. Increased microglial pruning is mediated specifically by C4. Furthermore, environmental factors (e.g., infections and stress) can lead to dysbiosis which was recently linked to microglial activation and pruning in SCZ. SUMMARY: Recent findings render the pruning machinery a potential target for early treatment and prevention in individuals at high risk for SCZ. Minocycline can improve cognition in SCZ, probably by reducing excessive pruning. Probiotics might also have beneficial effects on cognition, although recent findings are not encouraging. N-acetyl-cysteine recovers functional connectivity in SCZ both in vitro and in vivo, making it an interesting candidate
The pi-N Sigma term - an evaluation using staggered fermions
A lattice calculation of the pi-N sigma term is described using dynamical
staggered fermions. Preliminary results give a sea term comparable in magnitude
to the valence term.Comment: Latex article, 3 pages. Contribution to the LAT93 Conference (Dallas,
U.S.A., September 1993). HLRZ preprint 93-7
Viscoelastic parameter identification of human brain tissue
Understanding the constitutive behavior of the human brain is critical to interpret the physical environment during neurodevelopment, neurosurgery, and neurodegeneration. A wide variety of constitutive models has been proposed to characterize the brain at different temporal and spatial scales. Yet, their model parameters are typically calibrated with a single loading mode and fail to predict the behavior under arbitrary loading conditions. Here we used a finite viscoelastic Ogden model with six material parametersâan elastic stiffness, two viscoelastic stiffnesses, a nonlinearity parameter, and two viscous time constantsâto model the characteristic nonlinearity, conditioning, hysteresis and tension-compression asymmetry of the human brain. We calibrated the model under shear, shear relaxation, compression, compression relaxation, and tension for four different regions of the human brain, the cortex, basal ganglia, corona radiata, and corpus callosum. Strikingly, unconditioned gray matter with 0.36 kPa and white matter with 0.35 kPa were equally stiff, whereas conditioned gray matter with 0.52 kPa was three times stiffer than white matter with 0.18 kPa. While both unconditioned viscous time constants were larger in gray than in white matter, both conditioned constants were smaller. These rheological differences suggest a different porosity between both tissues and explainâat least in partâthe ongoing controversy between reported stiffness differences in gray and white matter. Our unconditioned and conditioned parameter sets are readily available for finite element simulations with commercial software packages that feature Ogden type models at finite deformations. As such, our results have direct implications on improving the accuracy of human brain simulations in health and disease
Ongoing Galactic Accretion: Simulations and Observations of Condensed Gas in Hot Halos
Ongoing accretion onto galactic disks has been recently theorized to progress
via the unstable cooling of the baryonic halo into condensed clouds. These
clouds have been identified as analogous to the High-Velocity Clouds (HVCs)
observed in HI in our Galaxy. Here we compare the distribution of HVCs observed
around our own Galaxy and extra-planar gas around the Andromeda galaxy to these
possible HVC analogs in a simulation of galaxy formation that naturally
generates these condensed clouds. We find a very good correspondence between
these observations and the simulation, in terms of number, angular size,
velocity distribution, overall flux and flux distribution of the clouds. We
show that condensed cloud accretion only accounts for ~ 0.2 M_solar / year of
the current overall Galactic accretion in the simulations. We also find that
the simulated halo clouds accelerate and become more massive as they fall
toward the disk. The parameter space of the simulated clouds is consistent with
all of the observed HVC complexes that have distance constraints, except the
Magellanic Stream which is known to have a different origin. We also find that
nearly half of these simulated halo clouds would be indistinguishable from
lower-velocity gas and that this effect is strongest further from the disk of
the galaxy, thus indicating a possible missing population of HVCs. These
results indicate that the majority of HVCs are consistent with being infalling,
condensed clouds that are a remnant of Galaxy formation.Comment: 10 pages, 6 figures, ApJ Accepted. Some changes to techniqu
Spatial string tension in lattice QCD at finite temperature
The spatial string tension across a crossover from the low temperature phase
to the high temperature phase is computed in QCD with two flavors of
non-perturbatively improved Wilson fermions at small lattice spacing a \sim
0.12fm. We find that in the low temperature phase spatial string tension agrees
well with zero temperature string tension. Furthermore, it does not show
increasing for temperatures up to T = 1.36 T_{pc}, the highest temperature
considered. Our results agree with some theoretical predictions.Comment: 8 pages, 2 figures, numerical results and both figures slightly
changed, comparison with theoretical predictions added, values of the ratio
T/T_{pc} slightly change
Competition between benthic cyanobacteria and diatoms as influenced by different grain sizes and temperatures
An experimental laboratory set-up was used to study the influence of different grain size compositions and temperatures on the growth of benthic cyanobacteria and diatoms, and on the competition between these 2 groups. Monospecific cultures of 3 species of cyanobacteria (Merismopedia punctata, Microcoleus chthonoplastes, Oscillatoria limosa), and of 2 species of benthic diatoms (Phaeodactylum tricornutum and Nitzschia sp.) were used. The organisms were cultured in 100 ml flasks filled with medium and 3 different kinds of sediment: (1) Sand (fine sand, 63 to 200 ”m), (2) Mud-I (mixed fine sand and mud <63 ”m in the ratio 80:20 wt %), (3) Mud-II (mixed fine sand and mud in the ratio 50:50 wt %). Experimental temperatures were 10, 15 and 25°C. At 10°C and 15°C, both diatom species achieved the highest biomass on the sediments of the finest grain size (50 wt % < 63 ”m) while cyanobacteria achieved low biomass levels. Coarsening of sediments at the same temperature levels revealed a gradually lower biomass of the diatoms. Particularly on sand, the diatoms never reached the same concentrations of chlorophyll a as on mud. The cyanobacteria, on the other hand, had the highest biomass on sand at 15°C. In the competition experiments the benthic diatom species Nitzschia sp. dominated all types of sediments at 10°C and 15°C. The experiments at 25°C were dominated by the filamentous cyanobacterium M. chthonoplastes. This indicates the importance of abiotic conditions for the distribution and abundance of benthic phototrophic micro-organisms
- âŠ