131 research outputs found

    A simple and affordable membrane-feeding method for Aedes aegpyti and Anopheles minimus (Diptera: Culicidae)

    Get PDF
    This study developed an artificial feeding (AF) method to replace direct host feeding (DHF) for the maintenance of Aedes aegypti and Anopheles minimus mosquito colonies. The procedure can be adopted by all laboratories due to its simple and affordable materials and design. The apparatus consists of heparinized cow blood contained in a 5 cm diameter glass petri dish with 5 cm2 Parafilm M (Bemis®) stretched thinly over the top, with a pre-heated bag of vegetable oil placed underneath to keep the blood warm. Both parts are contained within an insulated Styrofoam™ box with a hole in the lid for mosquitoes to access the membrane. Mosquitoes are fed by AF for 15 min at a time. Feeding rate and fecundity of Ae. aegypti mosquitoes feeding on the AF device were compared to those feeding on a live rat (DHF(r)), and of Anopheles minimus mosquitoes feeding on the AF device compared to those feeding on a human arm (DHF(h)). Aedes aegypti mosquitoes fed by AF or DHF(r) had similar feeding rates (38.2 ± 21.5% and 35.7 ± 18.2%, respectively) and overall egg production (1.5% difference). Anopheles minimus mosquitoes fed by the AF method had a lower feeding rate (52.0 ± 1.0% for AF compared to 70.7 ± 20.2% for DHF(h)) and overall egg production (40% reduction compared to DHF(h)). However, the number of eggs produced by AF-fed mosquitoes (1808 eggs per 100 mosquitoes) was still sufficient for colony maintenance, and with increased feeding time both parameters are expected to increase. Reduced feeding rate and overall egg production was observed when Ae. aegypti mosquitoes were fed on blood refrigerated for over two weeks. In conclusion, an AF device has been developed which can replace DHF for Ae. aegypti and An. minimus colony maintenance when using blood refrigerated for a maximum of two weeks

    An effective method for the identification and separation of Anopheles minimus, the primary malaria vector in Thailand, and its sister species Anopheles harrisoni, with a comparison of their mating behaviors

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The attached article is the published pdf

    Species composition and population dynamics of phlebotomine sand flies in a Leishmania infected area of Chiang Mai, Thailand

    Get PDF
    Phlebotomine sand flies are established vectors of leishmaniasis in humans. In Thailand, Leishmania martiniquensis and “Leishmania siamensis” have been described as causative agents of leishmaniasis. In this study, a survey of sand flies in the Leishmania infected area of Hang Dong district, Chiang Mai, Thailand was performed using CDC light traps for eight consecutive months, from January to August 2016. A total of 661 sand flies were collected, and of 280 female sand flies, four species of the genus Sergentomyia including Sergentomyia gemmea, S. barraudi, S. indica, and S. hivernus and one species of the genus Phlebotomus, Phlebotomus stantoni, were identified. S. gemmea and S. hivernus were found in Chiang Mai for the first time. The density of captured female sand flies was high in warm and humid periods from June to August, with temperatures of around 26°C and relative humidity about 74%. In addition, S. gemmea was the most predominant species in the area. Further studies as to whether or not these sand fly species could be a vector of Leishmaniasis in Thailand are required

    Experimental infection of Leishmania (Mundinia) martiniquensis in BALB/c mice and Syrian golden hamsters

    Get PDF
    Our objective was to investigate clinical progression, presence of parasites and DNAs, parasite loads, and histological alterations in BALB/c mice and Syrian golden hamsters after intraperitoneal inoculation with Leishmania (Mundinia) martiniquensis promastigotes with a goal to choosing an appropriate animal model for visceral leishmaniasis. Infections were monitored for 16 weeks. Infected BALB/c mice were asymptomatic during the infection course. Parasite DNAs were detected in the liver at week 8 of infection, followed by clearance in most animals at week 16; whereas in the spleen, parasite DNAs were detected until week 16. These results are correlated to those obtained measuring parasite loads in both organs. No parasite DNA and no alteration in the bone marrow were observed indicating that no dissemination occurred. These results suggest the control of visceralization of L. martiniquensis by BALB/c mice. In hamsters, weight loss, cachexia, and fatigue were observed after week 11. Leishmania martiniquensis parasites were observed in tissue smears of the liver, spleen, and bone marrow by week 16. Parasite loads correlated with those from the presence of parasites and DNAs in the examined tissues. Alterations in the liver with nuclear destruction and cytoplasmic degeneration of infected hepatocytes, presence of inflammatory infiltrates, necrosis of hepatocytes, and changes in splenic architecture and reduction and deformation of white pulp in the spleen were noted. These results indicate a chronic form of visceral leishmaniasis indicating that the hamster is a suitable animal model for the study of pathological features of chronic visceral leishmaniasis caused by L. martiniquensis. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature

    Didilia sp. Infecting Phlebotomus stantoni in Thailand

    Get PDF
    Nematode infection in wild caught Phlebotomine sand flies was investigated in Thailand. Light microscopy (LM) and scanning electron microscopy (SEM) were used to detect and morphologically characterize entomopathogenic nematodes that presented in the sand flies. Didilia sp. nematodes were found for the first time in the body cavity of wild caught male Phlebotomus stantoni sand flies. The Didilia sp. was identified based on the morphology of the adult nematodes, from their stylet and teeth at the anterior tip, body length, and egg shell sculpture. It was noted that every infected male sand fly had unrotated genitalia, which would not allow them to mate, thus leading to the loss of their offspring. This finding provided information that might lead to study on whether or not the Didilia sp. has the potential to control sand fly population

    Prevalence of anopheline species and their Plasmodium infection status in epidemic-prone border areas of Bangladesh

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Information related to malaria vectors is very limited in Bangladesh. In the changing environment and various <it>Anopheles </it>species may be incriminated and play role in the transmission cycle. This study was designed with an intention to identify anopheline species and possible malaria vectors in the border belt areas, where the malaria is endemic in Bangladesh.</p> <p>Methods</p> <p><it>Anopheles </it>mosquitoes were collected from three border belt areas (Lengura, Deorgachh and Matiranga) during the peak malaria transmission season (May to August). Three different methods were used: human landing catches, resting collecting by mouth aspirator and CDC light traps. Enzyme-linked immunosorbent assay (ELISA) was done to detect <it>Plasmodium falciparum</it>, <it>Plasmodium vivax</it>-210 and <it>Plasmodium vivax</it>-247 circumsporozoite proteins (CSP) from the collected female species.</p> <p>Results</p> <p>A total of 634 female <it>Anopheles </it>mosquitoes belonging to 17 species were collected. <it>Anopheles vagus </it>(was the dominant species (18.6%) followed by <it>Anopheles nigerrimus </it>(14.5%) and <it>Anopheles philippinensis </it>(11.0%). Infection rate was found 2.6% within 622 mosquitoes tested with CSP-ELISA. Eight (1.3%) mosquitoes belonging to five species were positive for <it>P. falciparum</it>, seven (1.1%) mosquitoes belonging to five species were positive for <it>P. vivax </it>-210 and a single mosquito (0.2%) identified as <it>Anopheles maculatus </it>was positive for <it>P. vivax</it>-247. No mixed infection was found. Highest infection rate was found in <it>Anopheles karwari </it>(22.2%) followed by <it>An. maculatus </it>(14.3%) and <it>Anopheles barbirostris </it>(9.5%). Other positive species were <it>An. nigerrimus </it>(4.4%), <it>An. vagus </it>(4.3%), <it>Anopheles subpictus </it>(1.5%) and <it>An. philippinensis </it>(1.4%). <it>Anopheles vagus </it>and <it>An. philippinensis </it>were previously incriminated as malaria vector in Bangladesh. In contrast, <it>An. karwari</it>, <it>An. maculatus</it>, <it>An. barbirostris</it>, <it>An. nigerrimus </it>and <it>An. subpictus </it>had never previously been incriminated in Bangladesh.</p> <p>Conclusion</p> <p>Findings of this study suggested that in absence of major malaria vectors there is a possibility that other <it>Anopheles </it>species may have been playing role in malaria transmission in Bangladesh. Therefore, further studies are required with the positive mosquito species found in this study to investigate their possible role in malaria transmission in Bangladesh.</p

    Is staying overnight in a farming hut a risk factor for malaria infection in a setting with insecticide-treated bed nets in rural Laos?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Overnight stays in farming huts are known to pose a risk of malaria infection. However, studies reporting the risk were conducted in the settings of poor net coverage. This study sought to assess whether an overnight stay in a farming hut is associated with an increased risk of malaria infection if insecticide-treated bed nets (ITNs) are properly used.</p> <p>Methods</p> <p>A pair of cross-sectional surveys was carried out in the Lamarm district of Sekong province, Laos, in March (dry season) and August (rainy season) in 2008. Questionnaire-based interviews and blood examinations were conducted with farmers and their household members from three randomly selected villages in March (127 households, 891 people) and August (128 households, 919 people). Logistic regression analysis, adjusted for potential confounding factors, was used to assess the association between malaria infection status and frequency of overnight stays for the two weeks prior to the study in both the seasons.</p> <p>Results</p> <p>In March, 13.7% of participants reported staying overnight in a farming hut at least once in the previous two weeks. The percentage increased to 74.6% in August. Not only adults but also young children stayed overnight as often as adults. The use of an ITN the preceding night was common both in farming huts (66.3% in March, 95.2% in August), and in main residences (85.8% in March, 92.5% in August). Logistic regression analysis showed no statistical association between malaria infection status and frequency of overnight stays in farming huts in either study period. However, people sharing one family type net with five people or more were significantly more likely to have malaria than those sharing a net with up to two people in the dry season.</p> <p>Conclusions</p> <p>This study showed that staying overnight in farming huts was not associated with an increased risk of malaria infection in the setting where ITNs were widely used in farming huts. It suggests that malaria infection during overnight stays in farming huts might be preventable if ITNs are properly used in rural Laos.</p

    Evidence to Support Karyotypic Variation of the Mosquito, Anopheles peditaeniatus in Thailand

    Get PDF
    Eight isoline colonies of Anopheles peditaeniatus Leicester (Diptera: Culicidae) were established from wild-caught females collected from buffalo-baited traps at 8 localities in Thailand. They showed 2 types of X (X2, X3) and 4 types of Y (Y2, Y3, Y4, Y5) chromosomes based on the number and amount of major block(s) of heterochromatin present in the heterochromatic arm, and were tentatively designated as Forms B (X2, X3, Y2), C (X3, Y3), D (X3, Y4) and E (X2, X3, Y5). Form B was found in Nan, Ratchaburi, and Chumphon provinces; Form C was obtained in Chon Buri province; Form D was recovered in Kamphaeng Phet province; and Form E was acquired in Chiang Mai, Udon Thani, and Ubon Ratchathani provinces. Crossing studies among the 8 isoline colonies, which were representative of 4 karyotypic forms of An. peditaeniatus, revealed genetic compatibility in providing viable progenies and synaptic salivary gland polytene chromosomes through F2-generations, thus suggesting the conspecific nature of these karyotypic forms. These results were supported by the very low intraspecific sequence variations (0.0 – 1.1%) of the nucleotide sequences in ribosomal DNA (ITS2) and mitochondrial DNA (COI and COII) of the 4 forms

    Social Determinants of Long Lasting Insecticidal Hammock-Use Among the Ra-Glai Ethnic Minority in Vietnam: Implications for Forest Malaria Control

    Get PDF
    BACKGROUND: Long-lasting insecticidal hammocks (LLIHs) are being evaluated as an additional malaria prevention tool in settings where standard control strategies have a limited impact. This is the case among the Ra-glai ethnic minority communities of Ninh Thuan, one of the forested and mountainous provinces of Central Vietnam where malaria morbidity persist due to the sylvatic nature of the main malaria vector An. dirus and the dependence of the population on the forest for subsistence - as is the case for many impoverished ethnic minorities in Southeast Asia. METHODS: A social science study was carried out ancillary to a community-based cluster randomized trial on the effectiveness of LLIHs to control forest malaria. The social science research strategy consisted of a mixed methods study triangulating qualitative data from focused ethnography and quantitative data collected during a malariometric cross-sectional survey on a random sample of 2,045 study participants. RESULTS: To meet work requirements during the labor intensive malaria transmission and rainy season, Ra-glai slash and burn farmers combine living in government supported villages along the road with a second home at their fields located in the forest. LLIH use was evaluated in both locations. During daytime, LLIH use at village level was reported by 69.3% of all respondents, and in forest fields this was 73.2%. In the evening, 54.1% used the LLIHs in the villages, while at the fields this was 20.7%. At night, LLIH use was minimal, regardless of the location (village 4.4%; forest 6.4%). DISCUSSION: Despite the free distribution of insecticide-treated nets (ITNs) and LLIHs, around half the local population remains largely unprotected when sleeping in their forest plot huts. In order to tackle forest malaria more effectively, control policies should explicitly target forest fields where ethnic minority farmers are more vulnerable to malaria

    The insecticide resistance status of malaria vectors in the Mekong region

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Knowledge on insecticide resistance in target species is a basic requirement to guide insecticide use in malaria control programmes. Malaria transmission in the Mekong region is mainly concentrated in forested areas along the country borders, so that decisions on insecticide use should ideally be made at regional level. Consequently, cross-country monitoring of insecticide resistance is indispensable to acquire comparable baseline data on insecticide resistance.</p> <p>Methods</p> <p>A network for the monitoring of insecticide resistance, MALVECASIA, was set up in the Mekong region in order to assess the insecticide resistance status of the major malaria vectors in Cambodia, Laos, Thailand, and Vietnam. From 2003 till 2005, bioassays were performed on adult mosquitoes using the standard WHO susceptibility test with diagnostic concentrations of permethrin 0.75% and DDT 4%. Additional tests were done with pyrethroid insecticides applied by the different national malaria control programmes.</p> <p>Results</p> <p><it>Anopheles dirus s.s</it>., the main vector in forested malaria foci, was susceptible to permethrin. However, in central Vietnam, it showed possible resistance to type II pyrethroids. In the Mekong delta, <it>Anopheles epiroticus </it>was highly resistant to all pyrethroid insecticides tested. It was susceptible to DDT, except near Ho Chi Minh City where it showed possible DDT resistance. In Vietnam, pyrethroid susceptible and tolerant <it>Anopheles minimus s.l</it>. populations were found, whereas <it>An. minimus s.l</it>. from Cambodia, Laos and Thailand were susceptible. Only two <it>An. minimus s.l</it>. populations showed DDT tolerance. <it>Anopheles vagus </it>was found resistant to DDT and to several pyrethroids in Vietnam and Cambodia.</p> <p>Conclusion</p> <p>This is the first large scale, cross-country survey of insecticide resistance in <it>Anopheles </it>species in the Mekong Region. A unique baseline data on insecticide resistance for the Mekong region is now available, which enables the follow-up of trends in susceptibility status in the region and which will serve as the basis for further resistance management. Large differences in insecticide resistance status were observed among species and countries. In Vietnam, insecticide resistance was mainly observed in low or transmission-free areas, hence an immediate change of malaria vector control strategy is not required. Though, resistance management is important because the risk of migration of mosquitoes carrying resistance genes from non-endemic to endemic areas. Moreover, trends in resistance status should be carefully monitored and the impact of existing vector control tools on resistant populations should be assessed.</p
    corecore