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ABSTRACT 18 

Our objective was to investigate clinical progression, presence of parasites and DNAs, parasite 19 

loads, and histological alterations in BALB/c mice and Syrian golden hamsters after intraperitoneal 20 

inoculation with Leishmania (Mundinia) martiniquensis promastigotes with a goal to choosing an 21 

appropriate animal model for visceral leishmaniasis. Infections were monitored for 16 weeks. Infected 22 

BALB/c mice were asymptomatic during the infection course. Parasite DNAs were detected in the liver at 23 

week 8 of infection, followed by clearance in most animals at week 16, whereas in the spleen parasite 24 

DNAs were detected until week 16. These results are correlated to those obtained measuring parasite 25 

loads in both organs. No parasite DNA and no alteration in the bone marrow were observed indicating 26 

that no dissemination occurred. These results suggest the control of visceralization of L. martiniquensis 27 

by BALB/c mice. In hamsters, weight loss, cachexia and fatigue were observed after week 11. 28 

Leishmania martiniquensis parasites were observed in tissue smears of the liver, spleen, and bone marrow 29 
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by week 16. Parasite loads correlated with those from the presence of parasites and DNAs in the 30 

examined tissues. Alterations in the liver with nuclear destruction and cytoplasmic degeneration of 31 

infected hepatocytes, presence of inflammatory infiltrates, necrosis of hepatocytes and changes in splenic 32 

architecture and reduction and deformation of white pulp in the spleen were noted. These results indicate 33 

a chronic form of visceral leishmaniasis indicating that the hamster is a suitable animal model for the 34 

study of pathological features of chronic visceral leishmaniasis caused by L. martiniquensis. 35 
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 39 

Introduction 40 

Leishmaniasis is an infectious disease caused by protozoan parasites in the genus Leishmania and occurs 41 

in many tropical and sub-tropical regions of the world. Visceral leishmaniasis is one of clinical 42 

manifestations considered as the most severe, and frequently causes death if left untreated. The two main 43 

species responsible for symptomatic leishmaniasis-attributed fatalities are L. donovani and L. infantum. 44 

Other forms of leishmaniasis include cutaneous and mucocutaneous leishmaniasis (WHO 2019). 45 

Various animal models have been used to elucidate pathogenesis, disease progression, drug 46 

treatment and immune responses to visceral leishmaniasis (Loría-Cervera and Andrade-Narváez 2014). 47 

Although several animals such as mice, hamsters, dogs, and non-human primates have been used in the 48 

study of leishmaniasis, the most widely used experimental models of visceral leishmaniasis are BALB/c 49 

mice and Syrian golden hamsters (Nieto et al. 2011). 50 

Murine models are popular and widely used in several fields of biomedical research, including the 51 

study of visceral leishmaniasis, because of the large collection of inbred strains and ability to create 52 

transgenic animals (Nieto et al. 2011; Johnson 2012). Mice have been proved as a useful model animal to 53 

investigate and characterize immune mechanisms/responses and host factors that influence Leishmania 54 

infection, identify genes involved in infection, and also predict the functional role of those genes (Nieto et 55 

al. 2011; Ong et al. 2020). However, the clinical course of visceral leishmaniasis in BALB/c mice 56 

depends on several factors including Leishmania species, inoculum size, and inoculation route (Carrion et 57 

al. 2006; de Melo et al. 2020). 58 
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The Syrian golden hamster is highly susceptible to L. donovani, and L. infantum, and the 59 

clinicopathological features of the hamster model of visceral leishmaniasis closely mimic the human form 60 

of the disease. The infection presents with increasing visceral parasite burden, progressive cachexia, 61 

hepatosplenomegaly, pancytopenia, hypergammaglobulinemia and ultimately death (Loría-Cervera and 62 

Andrade-Narváez 2014). In several studies, hamsters have been used as a drug treatment model in the 63 

evaluation of efficacy of new compounds for both cutaneous leishmaniasis and visceral leishmaniasis 64 

(Robledo et al. 2012; Gupta et al. 2011). 65 

In Thailand, most of leishmaniasis cases are caused by L. martiniquensis presenting as visceral and 66 

disseminated leishmaniasis (Leelayoova et al. 2017; Jariyapan et al. 2018). Animal models for the study 67 

of infectivity and pathogenesis of L. martiniquensis are needed. The clinical manifestations of an ideal 68 

animal model should resemble those occurring in humans, which present with weight loss, infection in 69 

internal organs such as liver, spleen, and bone marrow, and dissemination to the skin in the cases of 70 

immunocompromised hosts. Appropriate animal models would facilitate understanding of the biology of 71 

the parasite, clinical presentation and progression of the disease.  72 

So far, a few studies regarding animal infection of L. martiniquensis have been reported (Garin et 73 

al. 2001; Somboonpoonpol 2016; Becvar et al. 2020). Garin et al (2001) have infected BALB/c mice with 74 

two strains of a presumed monoxenous trypanosomatid isolated from humans (MHOM/MQ/92/MARl 75 

from an HIV patient and MHOM/MQ/97/MAR2 from an immunocompetent patient) that are later 76 

identified as L. martiniquensis (Desbois et al. 2014). Both strains are infective to BALB/c mice after 77 

inoculation with promastigotes subcutaneously or intravenously and able to grow and disseminate in the 78 

popliteal and mesenteric lymph nodes, liver, spleen, and brain of the mice (Garin et al. 2001). However, 79 

differences of the kinetics of parasite burdens in the organs are observed according to the infective strain. 80 

Somboonpoonpol (2016) has revealed that L. martiniquensis (MHOM/TH/2011/PG) causes visceral 81 

disease in BALB/c mice when inoculated via intravenous and intraperitoneal routes, based on the 82 

presence of amastigotes and genomic DNA of the parasite in target organs. In another study, guinea pigs 83 

(Cavia porcellus) have been infected with L. martiniquensis (MHOM/MQ/1992/MAR1 and 84 

MHOM/TH/2011/CU1). The infected animals develop only temporary erythema lesion at the site of 85 

inoculation and no infection to sand flies (Lutzomyia migonei) is observed indicating that guinea pigs are 86 

not an appropriate model animal for studying L. martiniquensis (Becvar et al. 2020). In addition, based on 87 
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previous experience (Handman 2001), different strains of L. martiniquensis might be expected to cause 88 

different progression of visceral disease. Therefore, the current study was performed using a different 89 

strain of L. martiniquensis (MHOM/TH/2013/LSCM3) and to explore the possible use of hamsters as an 90 

alternative model. Infection and clinical progression of the disease was studied including presence of 91 

parasites and DNAs, parasite loads, and histological alterations of liver and spleen in both BALB/c mice 92 

and Syrian golden hamsters. The experimental data obtained from this study will help in determining an 93 

appropriate model for pathological study of visceral leishmaniasis caused by L. martiniquensis. 94 

 95 

Materials and Methods 96 

Animals and ethics statement 97 

Male 8-10 week old BALB/c mice (Mus musculus) were purchased from Nomura Siam International Co., 98 

Ltd, Bangkok, Thailand. Male 8-10 week old Syrian golden hamsters (Mesocricetus auratus) were 99 

obtained from the animal house unit (in-house breeding) of the Faculty of Medicine, Chiang Mai 100 

University. All procedures performed on experimentally infected animals were reviewed and approved by 101 

the Ethics Committee on Animal Use of the Laboratory Animal Center, Chiang Mai University (Protocol 102 

number 2561/MC-0008). 103 

 104 

Parasites 105 

L. martiniquensis (MHOM/TH/2013/LSCM3) was used in this study (Chiewchanvit et al. 2015). 106 

Parasites were maintained in BALB/c mice for use in experimental infections as described below. 107 

 108 

Preparation of promastigotes to infect animals 109 

L. martiniquensis parasites used for experimental infections were isolated from the spleens of BALB/c 110 

mice previously inoculated intraperitoneally with L. martiniquensis promastigotes and maintained for 16 111 

weeks. Briefly, an infected mouse spleen was collected aseptically and placed in a small volume of sterile 112 

phosphate buffer saline (PBS). The spleen was minced and strained using a cell strainer (SPL Life 113 

Sciences Co., Ltd., Gyeonggi-do, Korea) using aseptic techniques. The suspension was washed by 114 

centrifugation at 26 °C, 1,500 ×g for 10 min, the cell pellet resuspended in Schneider’s insect medium 115 

(SIM) (Sigma-Aldrich, St. Louis, MO, USA) supplemented with 10% FBS and 25 μg/mL gentamicin 116 



 

5 
 

sulfate and cultured in the same medium at 26 °C without shaking. After 3-5 days of cultivation, 117 

promastigotes observed in the culture were subpassaged into RPMI-1640 medium supplemented with 118 

20% FBS, pH 5.5, 25 μg/mL gentamicin sulfate to stimulate metacyclogenesis (Zakai et al. 1998). The 119 

resulting stationary phase promastigotes at day 5 of cultivation were used to infect animals.  120 

 121 

Experimental infections 122 

Eighteen BALB/c mice and 18 hamsters were used in this study. In each experiment, six animals were 123 

used as a control group and injected intraperitoneally with PBS. Twelve animals were intraperitoneally 124 

injected with 2×107 promastigotes of L. martiniquensis resuspended in 100 µl of PBS. The evolution of L. 125 

martiniquensis infection in BALB/c mice and hamsters was monitored weekly for clinical signs (weight 126 

loss, cachexia, fatigue, ascites, scabs or skin lesions, hepatomegaly, and splenomegaly) and their body 127 

weight recorded using a balance (Sartorious TE313S Talent Analytical Balance, Sartorius AG, 128 

Goettingen, Germany). At 8 and 16 weeks post infection, three animals from each control group and six 129 

animals from each infected group were sacrificed using isoflurane anesthesia. In each animal, the liver, 130 

spleen, and bone marrow were removed separately under sterile conditions. The liver and spleen were 131 

examined macroscopically and appearance recorded using a digital camera. Then, the liver and spleen 132 

samples were weighed and cut into several portions to examine for parasites using impression smears, 133 

culture, and histological analysis, and for detection of parasite DNAs using a PCR method (below). For 134 

bone marrow samples, only impression smears and PCR were performed. 135 

 136 

Tissue impression smears 137 

Tissue samples of the liver, spleen, and bone marrow from infected BALB/c mice and hamsters (8 and 16 138 

weeks post infection) were smeared on glass slides. After air-drying, the smears were fixed with absolute 139 

methanol and stained with 5% (v/v) Giemsa’s solution for 30 min. The stained smears were examined 140 

under a light microscope (Olympus America Inc., Center Valley, PA, USA) for amastigotes of L. 141 

martiniquensis. 142 

 143 

Quantification of parasite loads by limiting dilution assay 144 
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Parasite loads in the liver and spleen of BALB/c mice and hamsters at 8 and 16 weeks post infection were 145 

quantified by limiting dilution assay (Buffet et al. 1995). Briefly, a piece of the infected liver or spleen 146 

was weighed on a precision balance and then minced in Schneider’s insect medium supplemented with 147 

10% FBS and 25 μg/mL gentamicin sulfate. The homogenates were strained using a cell strainer and 148 

washed in the medium by centrifugation at 26 °C, 1,500 ×g for 10 min. The supernatant medium was 149 

discarded. The pellet was resuspended in the same medium and dispensed in a 96 well microtiter culture 150 

plate (Nunc, Roskilde, Denmark). The suspension was five-fold serially diluted in the medium and 151 

incubated at 26 °C. The presence or absence of promastigotes in each well, which was examined daily for 152 

14 days with an inverted light microscope (Olympus America Inc., Center Valley, PA, USA), was 153 

recorded. The parasite load was determined from mean of reciprocal positive titers (the last dilution 154 

containing promastigotes) divided by weight of homogenized cross section and calculated as the number 155 

of parasites per gram of organ. 156 

 157 

Histological analysis 158 

The liver and spleen of uninfected and infected BALB/c mice and hamsters at 8 and 16 weeks post 159 

infection were used for the histological analysis. Tissue samples of these organs were fixed in 10% 160 

buffered formalin solution and processed for embedding in paraffin. Tissue sections (5 mm) were cut 161 

using a microtome (Zeiss Hyrax M25, Oberkochen, Germany) and stained with Hematoxylin-Eosin (HE). 162 

The stained sections were examined under a light microscope (Olympus America Inc., Center Valley, PA, 163 

USA) to analyze histological alterations, cellular inflammatory infiltrates, and the presence of L. 164 

martiniquensis amastigotes in the organ tissues. 165 

 166 

Detection of L. martiniquensis DNA by PCR 167 

Total genomic DNA was extracted from tissues of the liver, spleen, and bone marrow of 8 and 16 weeks-168 

infected BALB/c mice and hamsters using a genomic DNA purification kit (Thermo Fisher Scientific 169 

Inc., Waltham, MA, USA) according to the manufacturer’s instructions. Parasite DNA was detected by 170 

amplification of Leishmania rRNA ITS-1 using the LeF/LeR primers (Spanakos et al. 2008). The PCR 171 

reaction mixture contained template DNA, 1×PCR reaction buffer (Invitrogen, Carlsbad, CA, USA), 4 172 

mM MgCl2 (Invitrogen, Carlsbad, CA, USA), 0.6 μM of each primer (Invitrogen, Carlsbad, CA, USA), 173 
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0.8 mM of each dNTPs (Invitrogen, Carlsbad, CA, USA), and 1U of Taq DNA polymerase (Invitrogen, 174 

Carlsbad, CA, USA). Amplification was performed in TPersonal Combi Thermocycler (Biometra, 175 

Göttingen, Germany) using a step of initial denaturation at 94 °C for 5 min, followed by 35 cycles of 176 

denaturation at 94 °C for 1 min, annealing at 65 °C for 1 min, extension at 72 °C for 2 min, and a final 177 

extension step at 72 °C for 5 min. Amplified products were run on 1.2% agarose gels (Amresco, Atlanta, 178 

GA, USA) containing ethidium bromide. 179 

 180 

Statistical analysis 181 

Statistical analysis was performed using GraphPad Prism 6.0 program (Graphpad Software Inc., San 182 

Diego, CA, USA). Animal weight, organ weight, and parasite loads were expressed as mean ± standard 183 

deviation (SD) of six animals per group. Comparisons of animal weight between groups during infection 184 

were analyzed by two-way analysis of variance (ANOVA), followed by the Bonferroni’s multiple 185 

comparison tests. The difference between weight of uninfected and infected organs was analyzed by 186 

Student’s t-test. Comparisons of parasite loads between groups during infection were analyzed by two-187 

way ANOVA, followed by the Tukey’s multiple comparison tests. Differences were considered 188 

significant when p values were ≤ 0.05. 189 

 190 

Results 191 

Clinical progression of L. martiniquensis infection in BALB/c mice and Syrian golden hamsters 192 

Mice and hamsters were experimentally infected with L. martiniquensis promastigotes. After Leishmania 193 

infection, all infected groups reached the study endpoint at 8 and 16 weeks. Over the period of 194 

observation, infected BALB/c mice gained their body weight over time and did not lose weight compared 195 

to the uninfected group (Fig. 1a). In contrast, infected hamsters only sustained their body weight after 196 

infection and began to lose their body weight from 11 weeks post infection onwards. A significant change 197 

in the body weight of infected hamsters compared to uninfected controls was observed from week 13 to 198 

week 16 (Fig. 1a). No statistically significant differences in the weights of liver and spleen of both 16 199 

weeks-infected BALB/c mice and hamsters compared to uninfected groups were found (Fig. 1b). In 200 

infected BALB/c mice, no clinical signs of the disease were found throughout the experiment. However, 201 

clinical signs were observed in the infected hamsters in addition to weight loss, these being cachexia and 202 
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fatigue, but no ascites, scabs or skin lesions were seen. At necropsy, no changes in colors of the livers and 203 

spleens of infected animals were observed (Fig. 1c). No fibrosis was found in any organs. No 204 

hepatomegaly and splenomegaly was observed in any infected animals (Fig. 1c). 205 

 206 

Presence of L. martiniquensis parasites and DNAs in organ tissues of BALB/c mice and Syrian 207 

golden hamsters 208 

The liver, spleen, and bone marrow of all infected animals were removed and investigated for Leishmania 209 

infection. At 8 weeks post infection, no parasites were observed in any impression smears of the liver, 210 

spleen, and bone marrow samples of any infected mice or hamsters (data not shown). In contrast, by 16 211 

weeks tissue impression smears of the liver, spleen, and bone marrow of infected hamsters presented 212 

numerous intracellular and free amastigotes (Fig. 2d-f), whereas no parasites were seen in tissue smears 213 

from the mice at this time point (Fig. 2a-c).  214 

Detection of L. martiniquensis DNA using the PCR method was performed on all tissue samples 215 

of both infected animals to confirm the impression smear results. PCR results showed that parasite DNAs 216 

were detected in the liver and spleen of BALB/c mice, which were negative by impression smears (Fig. 217 

3). In the BALB/c liver tissues, parasite DNAs were detected in five of six infected mice at 8 weeks post 218 

infection and one of six infected mice at 16 weeks post infection. For the spleen tissues, parasite DNAs 219 

were detected in four of six infected mice at 8 weeks post infection and all infected mice at 16 weeks post 220 

infection (Fig. 3). In hamsters infected with L. martiniquensis, parasite DNAs were detected in tissues of 221 

the liver and spleen of all infected hamsters at 8 and 16 weeks post infection. For the bone marrow 222 

samples, parasite DNAs were only detected at 16 weeks post infection in infected hamsters (Fig. 3). 223 

 224 

Parasite loads in BALB/c mice and hamsters infected with L. martiniquensis 225 

Parasite loads in infected organs were quantified using a limiting dilution assay. At 8 weeks post 226 

infection, similar levels of infection were observed in the livers of BALB/c mice (~1×103 parasites/gram 227 

of organ) and hamsters (~5×103 parasites/gram of organ) that were not statistically significantly different 228 

(Fig. 4a). However, at 16 weeks post infection, a statistically significant increase of parasite load in the 229 

livers of hamsters (~1×106 parasites/gram of organ) was noted, whereas the parasite load in the livers of 230 
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BALB/c mice (~5×102 parasites/gram of organ) did not significantly increase compared to those at 8 231 

weeks post infection (Fig. 4a).  232 

In the spleen, no statistically significant differences in parasite loads were observed between 8 and 233 

16 weeks post infection in BALB/c mice. However, as in the liver, at 16 weeks post infection, parasite 234 

load in the spleens of hamsters (1×107 parasites/gram of organ) was significantly greater than those at 8 235 

weeks of infection (~5×104 parasites/gram of organ) and at 16 weeks post infection in BALB/c mice 236 

(~1×104 parasites/gram of organ) (Fig. 4b). 237 

 238 

Histological alterations in the liver and spleen of infected animals 239 

In infected BALB/c mice no pathological changes in liver and spleen sections after L. martiniquensis 240 

infection at 8 and 16 weeks were seen (data not shown). Similar results were seen in hamsters at 8 weeks 241 

post infection (data not shown). However, for hamsters, alterations of the infected liver were seen at 16 242 

weeks post infection with large areas of necrosis (Fig. 5b). Compared to normal liver tissue of the 243 

uninfected hamsters (Fig. 5a) cellular infiltrates of macrophages and lymphocytes were observed in the 244 

perivascular region (Fig. 5b). Also, compared to normal hepatocytes of the uninfected liver (Fig. 5c) 245 

nuclear destruction and cytoplasmic degeneration of the infected hepatocytes and the presence of 246 

amastigotes of L. martiniquensis were found in the infected tissue (Fig. 5d). Changes in splenic 247 

architecture were presented in the infected spleen. Reduction and deformation of white pulp compared to 248 

those of uninfected control were noted (Fig. 5e and 5f). Compared to the normal white pulp of the 249 

uninfected spleen (Fig. 1g), in the infected spleen, clusters of macrophages and numerous amastigotes 250 

were found (Fig. 5h). 251 

 252 

Discussion 253 

Experimental infections with L. martiniquensis in BALB/c mice and Syrian golden hamsters were 254 

performed to investigate an appropriate animal model for this Leishmania species. Mice and hamsters 255 

were injected intraperitoneally with promastigotes of L. martiniquensis and then monitored for 16 weeks. 256 

In this study, the infected BALB/c mice were clinically asymptomatic, whereas the infected hamsters 257 

developed symptomatic infection after 11 weeks post infection, presenting with weight loss, cachexia and 258 

fatigue. No hepatomegaly and splenomegaly were found in either mice or hamsters. Hepatomegaly and 259 
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splenomegaly are common in visceral leishmaniasis, however, most models of murine infection exhibit 260 

the subclinical or asymptomatic form of visceral leishmaniasis (Aslan et al. 2013; Gomes-Silva et al. 261 

2013; Martín-Martín et al. 2015; McCall et al. 2013). The splenomegaly could appear in BALB/c mice 262 

depending on the inoculum size (de Melo et al. 2020). Hamsters infected with L. infantum present 263 

splenomegaly after 3 months post-infection being more evident at 6 and 9 months after the infection 264 

(Moreira et al. 2016). 265 

Although the macroscopic examinations of the liver and spleen of infected hamsters were normal, 266 

numerous amastigotes were found in tissue impression smears of all examined organs of the infected 267 

hamsters at week16 of infection. These results indicate that L. martiniquensis parasites were able to infect 268 

the liver and spleen of hamsters and disseminated to their bone marrow, which correlated with the 269 

severity of infection. However, in BALB/c mice, amastigotes were not found in the tissue impression 270 

smears examined, but parasite DNAs were detected in the liver and spleen tissues, suggesting that the 271 

PCR method was more appropriate for detection of these low numbers of amastigotes in the organ tissues 272 

than the microscopic method. PCR based methods have been used to detect Leishmania parasite in 273 

several studies as they have provided high sensitivity, accuracy, and reproducibility (Solotra et al. 2001; 274 

Pothirat et al. 2014; Chiewchanvit et al. 2015; Ranasinghe et al. 2015; Montalvo et al. 2017; Medkour et 275 

al. 2020).  276 

L. martiniquensis DNAs were detected in tissues of mice and hamsters at various points. For 277 

BALB/c mice, parasite DNAs were detected in the liver at week 8 of infection, followed by nearly 278 

clearance of parasites in week 16, whereas in the spleen parasite DNAs were detected in all animals at 16 279 

weeks of infection. No parasite DNA was detected in the bone marrow of mice at any time point 280 

indicating that no dissemination of parasites to the bone marrow occurred. These results suggest the 281 

control of visceralization of L. martiniquensis in BALB/c mice. Another reason might be due to the 282 

period of the infection course in this study. Evaluation of parasite persistence and visceralization in 283 

BALB/c mice might need a longer infection course.  284 

Garin et al (2001) have monitored the infection of two strains of a presumed lower trypanosomatid 285 

(later identified as L. martiniquensis by Desbois et al (2014)) isolated from an HIV-infected patient 286 

(MHOM/MQ/92/MARl) and an immunocompetent patient (MHOM/MQ/97/MAR2) in BALB/c mice for 287 

150 days via subcutaneous and intravenous inoculation with 107 promastigotes. At day 150, parasites are 288 
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observed in liver, spleen, foot pad, popliteal, and mesenteric lymph nodes in mice infected with 289 

MHOM/MQ/92/MARl promastigotes via subcutaneous inoculation. In mice infected with 290 

MHOM/MQ/92/MARl promastigotes via intravenous inoculation, parasites are found in liver, spleen, 291 

mesenteric lymph node, and brain. For mice infected with MHOM/MQ/92/MAR2 parasites via 292 

subcutaneous inoculation, at day 150, parasites are found only in foot pad and popliteal lymph node but 293 

via intravenous inoculation parasites are observed in liver, spleen, and mesenteric lymph node. At all time 294 

point of infection, no parasites are observed in liver and spleen of BALB/c mice infected with 295 

MHOM/MQ/92/MAR2 parasites via subcutaneous inoculation, whereas mice infected with the same 296 

strain via intravenous inoculation, parasites are observed in both organs. In our study, the BALB/c mice 297 

were intraperitoneally injected with 2×107 L. martiniquensis (MHOM/TH/2013/LSCM3) promastigotes 298 

and parasites were detected in liver and spleen at all time point of the infection. Recently, the study of the 299 

infection of L. martiniquensis (MHOM/TH/2011/PG) in BALB/c mice has shown that, after intravenous 300 

inoculation and intraperitoneal inoculation with 5×106 promastigotes, parasite DNAs are detected in the 301 

bone marrow at 16 weeks post-infection (Somboonpoonpol 2016). In the present study, no L. 302 

martiniquensis (MHOM/TH/2013/LSCM3) DNAs were found in bone marrow at the same time point of 303 

the infection. These results suggest that several factors such as parasite strain, inoculum size and 304 

inoculation route influence the outcome of visceral leishmaniasis caused by L. martiniquensis in BALB/c 305 

mice. 306 

From experimental data on L. infantum infection in BALB/c mice reviewed by Loeuillet et al 307 

(2016), elimination of parasites in the liver and their persistence in the spleen involves organ-specific 308 

immune responses. In the early stage of infection, L. infantum promastigotes are rapidly cleared (more 309 

than 95%) from the circulation of infected BALB/c mice via phagocytosis by marginal zone macrophages 310 

in spleen. In the liver, L. infantum promastigotes invade the resident macrophages, Kupffer cells and 311 

dendritic cells, becoming amastigotes and replicating. In the first two weeks, in liver, TGFβ (macrophage-312 

inhibitory cytokines) levels are elevated. TGFβ produced by cells of the spleen red pulp may contribute to 313 

the establishment of infection and parasite replication. In addition, a Th1 immune response inducing 314 

macrophages to synthesize leishmanicidal molecules, such as nitric oxide (NO) is ineffective. Both 315 

elevated TGFβ levels and ineffective Th1 response allow uncontrolled parasite growth. In the spleen, in 316 

the first four weeks, immune cells, such as CD4+ T, CD8+ T and natural killer (NK) cells, are not capable 317 
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of producing IFNγ and IL2 (macrophage-activating cytokines) that promote NO synthesis. After the first 318 

4 weeks of infection, the immune cells recover their capacity to produce IFNγ, thus promoting 319 

leishmanicidal activity of the macrophages with NO synthesis and control of granuloma formation 320 

(parasitized Kupffer cells) in the liver. Thus, parasite burden reduces ultimately. In synergy with IFNγ, 321 

IL17A also contributes to macrophage activation with NO production, leading to parasite clearance. In 322 

liver, infection is resolved after 8 weeks of infection. However, in the spleen, infection is maintained 323 

during the entire visceral leishmaniasis course. L. infantum parasite persistence may be due to sustained 324 

TGFβ production by CD4+ CD25+ T cells that contributes to immunosuppression (Rodrigues et al. 2009). 325 

The control of visceralization of L. martiniquensis infection in BALB/c mice might use similar immune 326 

control of infection as in L. infantum.  327 

In hamsters, L. martiniquensis parasites grew and persisted in the liver, spleen, and bone marrow 328 

over the period of infection suggesting this animal is a suitable experimental model for study of 329 

pathological features of visceral leishmaniasis caused by L. martiniquensis. A possible explanation for the 330 

suitability of this experimental model might be similar to that seen in experimental studies in L. infantum 331 

and L. donovani-infected hamsters, where early production of IL10 and TGFβ and the impairment of NO 332 

synthesis in response to IFNϒ contribute to establishing of Leishmania infection and defective parasite 333 

killing (Melby et al. 2001; Nieto et al. 2011). However, more studies of cytokine production kinetics and 334 

activation of the different classes of immune cells by L. martiniquensis infection in both BALB/c mice 335 

and hamsters are required. 336 

Considering parasite load, which indicates the growth capacity of parasites in animal organs, we 337 

observed that growth of L. martiniquensis parasites was limited in the tissues of BALB/c mice. Parasite 338 

numbers had not increased in liver and spleen at 16 weeks of infection compared to 8 weeks. In contrast, 339 

in hamsters, parasites had significantly increased in number by 16 weeks of infection in both liver and 340 

spleen. These results correlate with those on the presence of parasites in tissue smears and DNAs in the 341 

examined organs. It is possible that the high parasite growth induced an inflammatory response and the 342 

resulting pathological changes observed in the organ tissues of hamsters. 343 

Hamsters infected with L. martiniquensis had significant changes in the liver and spleen tissues. 344 

Alterations in the liver with necrosis of hepatocytes appeared to be a consequence of amastigote infection. 345 

The presence of inflammatory infiltrates consisting of macrophages and lymphocytes accumulating 346 
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around the portal vein was similar to several studies on visceral leishmaniasis (Gomes-Silva et al. 2013; 347 

Rashidi et al. 2018). Inflammatory infiltrates indicate a chronic hepatitis due to Leishmania infection. The 348 

Kupffer cells containing parasites in their cytoplasm develop a progressive cellular swelling, nuclear 349 

degeneration and disruption of plasma membrane (González et al. 1988; Vianna et al. 2002). Infection by 350 

L. martiniquensis parasites changed the morphology of splenic pulps, and also reduction and deformation 351 

of white pulp in the spleen of infected hamsters were observed. This is similar to the data reviewed by 352 

Hermida et al (2018) that white pulp atrophy, disappearance of secondary lymphoid follicles and the 353 

marginal zone, and morphological alterations of the red and white pulps are associated with the chronic 354 

severe form of visceral leishmaniasis in dogs infected with L. infantum. 355 

In conclusion, this work examined the infection of L. martiniquensis in BALB/c mice and Syrian 356 

golden hamsters, with regard to clinical presentation, visceralization and proliferation of parasites, and 357 

histological alterations in the organ tissues. During the course of infection no clinical signs were observed 358 

in BALB/c mice. Parasite DNAs were detected in the liver at week 8 of infection, but cleared in most 359 

animals at week 16, whereas parasite DNA was detected in the spleen until week 16 of infection. These 360 

results are correlated with the results of parasite loads in the liver and spleen. No dissemination to the 361 

bone marrow occurred and no alterations in the tissues of the BALB/c mice were observed. However, 362 

extension of the period of infection up to 1 year for BALB/c mice could provide more information 363 

regarding clinical manifestations, pathological changes in tissues/organs, and biochemical/hematological 364 

alterations. For Syrian golden hamsters, weight loss, cachexia and fatigue were observed after 11 weeks 365 

of infection. L. martiniquensis parasites infected both liver and spleen and disseminated to bone marrow. 366 

Parasite loads correlated with the results of presence of parasites and DNAs in liver and spleen. At week 367 

16 of infection, hamsters infected with L. martiniquensis exhibited signficant histological alterations in 368 

the liver and spleen tissues indicating progressive visceral leishmaniasis. Therefore, the Syrian golden 369 

hamster is an appropriate animal model for study of pathological features of chronic visceral 370 

leishmaniasis caused by L. martiniquensis. 371 
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 499 

Figure captions 500 

Fig. 1 Comparative clinicopathology of L. martiniquensis infection in BALB/c and Syrian golden 501 

hamsters. a Body weights of infected mice and hamsters compared to uninfected groups over time of 502 

infection. b Liver (left bar) and spleen (right bar) weights of 16 weeks-infected mice and hamsters 503 

compared with uninfected group. Results are expressed as mean ± SD. c Macroscopic aspect of infected 504 

and uninfected animals, infected livers, and infected spleens compared to uninfected organs. Bar = 1 cm 505 

 506 

Fig. 2 Light micrographs of Giemsa-stained imprints from the liver and spleen of BALB/c mice and 507 

Syrian golden hamsters after 16 weeks post infection. a Liver, b spleen, and c bone marrow impression 508 

smears of mice. d liver, e spleen, and f bone marrow impression smears of hamsters. Arrows indicate 509 

amastigotes of L. martiniquensis. Bar: 20 μm 510 

 511 

Fig. 3 PCR amplification of L. martiniquensis DNAs in tissue samples of BALB/c mice and Syrian 512 

golden hamsters using LeF/LeR primers for Leishmania rRNA ITS-1. Tissues of animals were sampled at 513 

8 and 16 weeks post infection (w pi.). Lanes: MW, 100 bp DNA ladder; Neg, negative control - no DNA; 514 

Pos, positive control - L. martiniquensis DNA; a-f, samples from mice; g-l, samples from hamsters. BM - 515 

bone marrow 516 

 517 

Fig. 4 Parasite loads in the livers and spleens of BALB/c mice and Syrian golden hamsters infected with 518 

L. martiniquensis determined by limiting dilution assay. a Parasite load quantified from the liver of 519 

infected mice and hamsters at 8 and 16 weeks post infection. b Parasite load quantified from the spleens 520 
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of infected mice and hamsters at 8 and 16 weeks post infection. Results are expressed as mean ± SD of 521 

six animals per group. White bar: BALB/c. Black bar: hamster. **p ≤ 0.001, ****p ≤ 0.0001 522 

 523 

Fig. 5 Histological sections of the liver and spleen of L. martiniquensis-infected hamsters compared with 524 

uninfected controls. a Normal tissue of the uninfected liver with normal cellular organization. b 525 

Mononuclear infiltrates in perivascular region and tissue alterations found in the infected liver. c Normal 526 

hepatocytes of the uninfected liver. d Degenerating hepatocytes of the infected liver showing non-527 

nucleated cells. Arrows indicate cells containing amastigotes inside. e Normal architecture of the 528 

uninfected spleen with distinction between the white and red pulp. f Deformation and reduction of the 529 

white pulp of the infected spleen. g Normal white pulp of the uninfected spleen. h Clusters of 530 

macrophages containing numerous amastigotes inside (arrows) found in the infected spleen. PV: portal 531 

vein, WP: white pulp. a, b, e and f, Bar: 200 μm.  c, d, g and h, Bar = Bar: 20 μm 532 
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