1,844 research outputs found
Additive for zinc electrodes
A zinc electrode for alkaline cells includes up to about ten percent by weight of Ba(OH)2.8H2O with about five percent being preferred. The zinc electrode may or may not be amalgamated with mercury
Stress and Emotion Classification Using Jitter and Shimmer Features
In this paper, we evaluate the use of appended jitter and shimmer speech features for the classification of human speaking styles and of animal vocalization arousal levels. Jitter and shimmer features are extracted from the fundamental frequency contour and added to baseline spectral features, specifically Mel-frequency cepstral coefficients (MFCCs) for human speech and Greenwood function cepstral coefficients (GFCCs) for animal vocalizations. Hidden Markov models (HMMs) with Gaussian mixture models (GMMs) state distributions are used for classification. The appended jitter and shimmer features result in an increase in classification accuracy for several illustrative datasets, including the SUSAS dataset for human speaking styles as well as vocalizations labeled by arousal level for African elephant and Rhesus monkey species
Evolutionary biology for the 21st century
New theoretical and conceptual frameworks are required for evolutionary biology to capitalize on the wealth of data now becoming available from the study of genomes, phenotypes, and organisms - including humans - in their natural environments.Molecular and Cellular BiologyOrganismic and Evolutionary Biolog
Successful Flash-Cooling of Xenon Derivatized Myoglobin Crystals
This paper demonstrates for the first time a method for preparing cryocooled xenon-derivatized protein crystals. The method is based upon the hypothesis and subsequent observation that the diffusion of a xenon atom from a tight binding site following depressurization occurs on a timescale of minutes. We have observed significant changes in diffraction intensities from myoglobin crystals for up to 5 min following depressurization from 1 MPa of xenon. In accordance with this observation, a xenon-derivatized myoglobin crystal was cryocooled at ~95 K within 20 s of complete depressurization. A crystallographic data set was then collected to 2.0 Å resolution and isomorphous and anomalous difference Patterson maps revealed the presence of a well ordered xenon site with an occupancy of approximately 0.5. Phasing statistics for this site were of good quality and demonstrate the practicality of this method. The ability to cryocool xenon-derivatized crystals will make this heavy-atom substitution method even more useful for single-isomorphous-replacement and multiple-isomorphous-replacement phasing of macromolecules
Visualizing sound emission of elephant vocalizations: evidence for two rumble production types
Recent comparative data reveal that formant frequencies are cues to body size in animals, due to a close relationship between formant frequency spacing, vocal tract length and overall body size. Accordingly, intriguing morphological adaptations to elongate the vocal tract in order to lower formants occur in several species, with the size exaggeration hypothesis being proposed to justify most of these observations. While the elephant trunk is strongly implicated to account for the low formants of elephant rumbles, it is unknown whether elephants emit these vocalizations exclusively through the trunk, or whether the mouth is also involved in rumble production. In this study we used a sound visualization method (an acoustic camera) to record rumbles of five captive African elephants during spatial separation and subsequent bonding situations. Our results showed that the female elephants in our analysis produced two distinct types of rumble vocalizations based on vocal path differences: a nasally- and an orally-emitted rumble. Interestingly, nasal rumbles predominated during contact calling, whereas oral rumbles were mainly produced in bonding situations. In addition, nasal and oral rumbles varied considerably in their acoustic structure. In particular, the values of the first two formants reflected the estimated lengths of the vocal paths, corresponding to a vocal tract length of around 2 meters for nasal, and around 0.7 meters for oral rumbles. These results suggest that African elephants may be switching vocal paths to actively vary vocal tract length (with considerable variation in formants) according to context, and call for further research investigating the function of formant modulation in elephant vocalizations. Furthermore, by confirming the use of the elephant trunk in long distance rumble production, our findings provide an explanation for the extremely low formants in these calls, and may also indicate that formant lowering functions to increase call propagation distances in this species'
Roaring high and low: composition and possible functions of the Iberian stag's vocal repertoire
We provide a detailed description of the rutting vocalisations of free-ranging male Iberian deer (Cervus elaphus hispanicus, Hilzheimer 1909), a geographically isolated and morphologically differentiated subspecies of red deer Cervus elaphus. We combine spectrographic examinations, spectral analyses and automated classifications to identify different call types, and
compare the composition of the vocal repertoire with that of other red deer subspecies. Iberian stags give bouts of roars (and more rarely, short series of barks) that are typically composed of two different types of calls. Long Common Roars are mostly given at the beginning or at the end of the bout, and are characterised by a high fundamental frequency (F0) resulting in poorly defined formant frequencies but a relatively high amplitude. In contrast, Short Common Roars are typically given in the middle or at the end of the bout, and are characterised by a lower F0 resulting in relatively well defined vocal tract resonances, but low amplitude. While we did not identify entirely Harsh Roars (as described in the Scottish red
deer subspecies (Cervus elaphus scoticus), a small percentage of Long Common Roars contained segments of deterministic chaos. We suggest that the evolution of two clearly distinct types of Common Roars may reflect divergent selection pressures favouring either vocal efficiency in high pitched roars or the communication of body size in low-pitched, high spectral density roars highlighting vocal tract resonances. The clear divergence of the Iberian red deer vocal repertoire from those of other documented European red deer populations reinforces the status of this geographical variant as a distinct subspecies
Differential Dynamics of Transposable Elements during Long-Term Diploidization of Nicotiana Section Repandae (Solanaceae) Allopolyploid Genomes
PubMed ID: 23185607This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
The iPlant Collaborative: Cyberinfrastructure for Plant Biology
The iPlant Collaborative (iPlant) is a United States National Science Foundation (NSF) funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006). iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services
- …
