67 research outputs found
Thermodynamic model of hardness: Particular case of boron-rich solids
A number of successful theoretical models of hardness have been developed
recently. A thermodynamic model of hardness, which supposes the intrinsic
character of correlation between hardness and thermodynamic properties of
solids, allows one to predict hardness of known or even hypothetical solids
from the data on Gibbs energy of atomization of the elements, which implicitly
determine the energy density per chemical bonding. The only structural data
needed is the coordination number of the atoms in a lattice. Using this
approach, the hardness of known and hypothetical polymorphs of pure boron and a
number of boron-rich solids has been calculated. The thermodynamic
interpretation of the bonding energy allows one to predict the hardness as a
function of thermodynamic parameters. In particular, the excellent agreement
between experimental and calculated values has been observed not only for the
room- temperature values of the Vickers hardness of stoichiometric compounds,
but also for its temperature and concentration dependencies
Ionic high-pressure form of elemental boron
Boron is an element of fascinating chemical complexity. Controversies have
shrouded this element since its discovery was announced in 1808: the new
'element' turned out to be a compound containing less than 60-70 percent of
boron, and it was not until 1909 that 99-percent pure boron was obtained. And
although we now know of at least 16 polymorphs, the stable phase of boron is
not yet experimentally established even at ambient conditions. Boron's
complexities arise from frustration: situated between metals and insulators in
the periodic table, boron has only three valence electrons, which would favour
metallicity, but they are sufficiently localized that insulating states emerge.
However, this subtle balance between metallic and insulating states is easily
shifted by pressure, temperature and impurities. Here we report the results of
high-pressure experiments and ab initio evolutionary crystal structure
predictions that explore the structural stability of boron under pressure and,
strikingly, reveal a partially ionic high-pressure boron phase. This new phase
is stable between 19 and 89 GPa, can be quenched to ambient conditions, and has
a hitherto unknown structure (space group Pnnm, 28 atoms in the unit cell)
consisting of icosahedral B12 clusters and B2 pairs in a NaCl-type arrangement.
We find that the ionicity of the phase affects its electronic bandgap, infrared
adsorption and dielectric constants, and that it arises from the different
electronic properties of the B2 pairs and B12 clusters and the resultant charge
transfer between them.Comment: Published in Nature 453, 863-867 (2009
The high-pressure phase of boron, {\gamma}-B28: disputes and conclusions of 5 years after discovery
{\gamma}-B28 is a recently established high-pressure phase of boron. Its
structure consists of icosahedral B12 clusters and B2 dumbbells in a NaCl-type
arrangement (B2){\delta}+(B12){\delta}- and displays a significant charge
transfer {\delta}~0.5- 0.6. The discovery of this phase proved essential for
the understanding and construction of the phase diagram of boron. {\gamma}-B28
was first experimentally obtained as a pure boron allotrope in early 2004 and
its structure was discovered in 2006. This paper reviews recent results and in
particular deals with the contentious issues related to the equation of state,
hardness, putative isostructural phase transformation at ~40 GPa, and debates
on the nature of chemical bonding in this phase. Our analysis confirms that (a)
calculations based on density functional theory give an accurate description of
its equation of state, (b) the reported isostructural phase transformation in
{\gamma}-B28 is an artifact rather than a fact, (c) the best estimate of
hardness of this phase is 50 GPa, (d) chemical bonding in this phase has a
significant degree of ionicity. Apart from presenting an overview of previous
results within a consistent view grounded in experiment, thermodynamics and
quantum mechanics, we present new results on Bader charges in {\gamma}-B28
using different levels of quantum-mechanical theory (GGA, exact exchange, and
HSE06 hybrid functional), and show that the earlier conclusion about
significant degree of partial ionicity in this phase is very robust
Femtosecond and Ultraviolet Laser Irradiation of Graphite-Like Hexagonal Boron Nitride
Effect of the femtosecond and nanosecond UV laser irradiation (below the
ablation threshold) of graphite-like hexagonal boron nitride (hBN) has been
studied. Experiments were carried out with the compacted powder under high
vacuum at room temperature using excimer KrF laser (248 nm). In the nanosecond
operation mode, the laser-induced fluorescence spectra are found strongly
modified depending on the integrated doze, which is attributed to a progressive
enrichment of the surface layer by elemental boron. A slow sample recovery
after the laser irradiation has been observed. On the other hand, in the
femtosecond mode the fluorescence spectra depend on the laser fluence, and the
changes are reversible: low energy fluorescence spectra are restored
immediately when the laser energy decreases. This effect can be explained by a
material bleaching, which favors a bulk centers emission. The ablation
threshold has been determined as 78 mJ/cm2 in the femtosecond laser operational
mode
Synthesis and Thermal Stability of Cubic ZnO in the Salt Nanocomposites
Cubic zinc oxide (rs-ZnO), metastable under normal conditions, was
synthesized from the wurtzite modification (w-ZnO) at 7.7 GPa and ~800 K in the
form of nanoparticles isolated in the NaCl matrix. The phase transition rs-ZnO
\rightarrow w-ZnO in nanocrystalline zinc oxide under ambient pressure was
experimentally studied for the first time by differential scanning calorimetry
and high-temperature X-ray diffraction. It was shown that the transition occurs
in the 370-430 K temperature range and its enthalpy at 400 K is -10.2 \pm 0.5
kJ mol-1.Comment: 12 pages, 4 figures, 1 tabl
Graphite and Hexagonal Boron-Nitride Possess the Same Interlayer Distance. Why?
Graphite and hexagonal boron nitride (h-BN) are two prominent members of the
family of layered materials possessing a hexagonal lattice. While graphite has
non-polar homo-nuclear C-C intra-layer bonds, h-BN presents highly polar B-N
bonds resulting in different optimal stacking modes of the two materials in
bulk form. Furthermore, the static polarizabilities of the constituent atoms
considerably differ from each other suggesting large differences in the
dispersive component of the interlayer bonding. Despite these major differences
both materials present practically identical interlayer distances. To
understand this finding, a comparative study of the nature of the interlayer
bonding in both materials is presented. A full lattice sum of the interactions
between the partially charged atomic centers in h-BN results in vanishingly
small monopolar electrostatic contributions to the interlayer binding energy.
Higher order electrostatic multipoles, exchange, and short-range correlation
contributions are found to be very similar in both materials and to almost
completely cancel out by the Pauli repulsions at physically relevant interlayer
distances resulting in a marginal effective contribution to the interlayer
binding. Further analysis of the dispersive energy term reveals that despite
the large differences in the individual atomic polarizabilities the
hetero-atomic B-N C6 coefficient is very similar to the homo-atomic C-C
coefficient in the hexagonal bulk form resulting in very similar dispersive
contribution to the interlayer binding. The overall binding energy curves of
both materials are thus very similar predicting practically the same interlayer
distance and very similar binding energies.Comment: 18 pages, 5 figures, 2 table
Computational prediction of new magnetic materials
The discovery of new magnetic materials is a big challenge in the field of modern materials science. We report the development of a new extension of the evolutionary algorithm USPEX, enabling the search for half-metals (materials that are metallic only in one spin channel) and hard magnetic materials. First, we enabled the simultaneous optimization of stoichiometries, crystal structures, and magnetic structures of stable phases. Second, we developed a new fitness function for half-metallic materials that can be used for predicting half-metals through an evolutionary algorithm. We used this extended technique to predict new, potentially hard magnets and rediscover known half-metals. In total, we report five promising hard magnets with high energy product (|BH|MAX), anisotropy field (Ha), and magnetic hardness (κ) and a few half-metal phases in the Cr-O system. A comparison of our predictions with experimental results, including the synthesis of a newly predicted antiferromagnetic material (WMnB2), shows the robustness of our technique. © 2022 Author(s).Russian Science Foundation, RSF, (19-72-30043)The theoretical study of ferromagnets and DFT + DMFT calculations were supported by the Russian Science Foundation (Grant No. 19-72-30043). We thank Dr. V. A. Mukhanov for assistance in high-pressure experiments and I. V. Blinov, P. Y. Plechov, and A. N. Vasilyev for their help in the initial stages of this project
- …