435 research outputs found
Electron orbital valves made of multiply connected armchair carbon nanotubes with mirror-reflection symmetry: tight-binding study
Using the tight-binding method and the Landauer-B\"{u}ttiker conductance
formalism, we demonstrate that a multiply connected armchair carbon nanotube
with a mirror-reflection symmetry can sustain an electron current of the
-bonding orbital while suppress that of the -antibonding orbital over
a certain energy range. Accordingly, the system behaves like an electron
orbital valve and may be used as a scanning tunneling microscope to probe
pairing symmetry in d-wave superconductors or even orbital ordering in solids
which is believed to occur in some transition-metal oxides.Comment: 4 figures, 12 page
Cutting Ties with Pro-Ana: A Narrative Inquiry Concerning the Experiences of Pro-Ana Disengagement from Six Former Site Users.
Websites advocating the benefits of eating disorders (“Pro-Ana”) tend to reinforce and maintain restrictive eating and purging behaviors. Yet remarkably, no study has explored individual accounts of disengagement from these sites and the associated meanings. Using narrative inquiry, this study sought to address this gap. From the interviews of six women, two overarching storylines emerged. The first closely tied disengagement to recovery with varying positions of personal agency claimed: this ranged from enforced and unwelcomed breaks that ignited change, to a personal choice that became viable through the development of alternative social and personal identities. A strong counternarrative to “disengagement as recovery” also emerged. Here, disengagement from Pro-Ana was storied alongside a need to retain an ED lifestyle. With “recovery” being just one reason for withdrawal from Pro-Ana sites, clinicians must remain curious about the meanings individuals ascribe to this act, without assuming it represents a step toward recovery.Peer reviewedFinal Accepted Versio
Direct observation of localized defect states in semiconductor nanotube junctions
Scanning tunneling microscopy of semiconductor-semiconductor carbon nanotube junctions with different band gaps was studied. Characteristic features of the wave functions at different energy levels were exhibited in the atomically resolved scanning tunneling microscopy. The experimental observations in terms of the pentagon-heptagon defects in the junction were interpreted.open888
Local electronic density of states of a semiconducting carbon nanotube interface
The local electronic structure of semiconducting single-wall carbon nanotubes was studied with scanning tunneling microscopy. We performed scanning tunneling spectroscopy measurement at selected locations on the center axis of carbon nanotubes, acquiring a map of the electronic density of states. Spatial oscillation was observed in the electronic density of states with the period of atomic lattice. Defect induced interface states were found at the junctions of the two semiconducting nanotubes, which are well-understood in analogy with the interface states of bulk semiconductor heterostructures. The electronic leak of the van Hove singularity peaks was observed across the junction, due to inefficient charge screening in a one-dimensional structure.open111
Paired gap states in a semiconducting carbon nanotube: Deep and shallow levels
Several paired, localized gap states were observed in semiconducting single-wall carbon nanotubes using spatially resolved scanning tunneling spectroscopy. A pair of gap states is found far from the band edges, forming deep levels, while the other pair is located near the band edges, forming shallow levels. With the help of a first-principles study, the former is explained by a vacancy-adatom complex while the latter is explained by a pentagon-heptagon structure. Our experimental observation indicates that the presence of the gap states provides a means to perform local band-gap engineering as well as doping without impurity substitution.open433
Charity registration and reporting:a cross-Jurisdictional and theoretical analysis of regulatory impact
Increasingly governments worldwide regulate charities, seeking to restrict the number of organizations claiming taxation exemptions, reduce abuse of state support and fraud. Under public interest theory governments may increase philanthropy through public trust and confidence in charities. Under public choice theory regulators will maximize political returns, ‘manage’ charity-government relationships, and avoid regulatory capture. Phillips and Smith (2014) suggest that charities’ regulatory regimes should coalesce, despite jurisdictional diversity. We analyse charity regulatory regimes against underlining theories of regulation, and assess regulatory costs and benefits. Thus regulators can reduce regulatory inefficiency, and balance accountability and transparency demands with charities’ abilities to deliver
Protic Ionic Liquids Used as Metal-Forming Green Lubricants for Aluminum: Effect of Anion Chain Length
Among the applications for protic ionic liquids (PILs), lubrication is one of the newest and the most promising. In this work, ammonium-based protic ionic liquids were tested as lubricant fluids for aluminum-steel contacts. PILs were synthesized with 2-hydroxyethylamine (2HEA) and a carboxylic acid (formic and pentanoic), aiming to understand the effect of two different anion chain lengths on the lubricant behavior. The synthesized PILs were characterized by RMN, FTIR and TGA. Wear tests, conducted using a ball-on-plate configuration, showed that the increase of the anion carbon chain length in the PIL structure reduced significantly the coefficient of friction value. Besides, after the wear tests, the PILs structural integrity was not affected. In the same way, bending under tension (BUT) tests evidenced that the performance for stamping conditions of the PIL with the longest anion carbon chain was similar to that of the commercial lubricant. Since, both formed a uniform tribofilm, developed the same lubrication regime and the drawing forces values were close and constant. Hence, the ionic liquid obtained with 2HEA and pentanoic acid (2HEAPe) is as suitable as the commercial lubricant for metal forming processes
Micronutrient Deficits Are Still Public Health Issues among Women and Young Children in Vietnam
Background: The 2000 Vietnamese National Nutrition Survey showed that the population’s dietary intake had improved since 1987. However, inequalities were found in food consumption between socioeconomic groups. As no national data exist on the prevalence of micronutrient deficiencies, a survey was conducted in 2010 to assess the micronutrient status of randomly selected 1526 women of reproductive age and 586 children aged 6–75 mo. Principal Findings: In women, according to international thresholds, prevalence of zinc deficiency (ZnD, 67.262.6%) and vitamin B12 deficiency (11.761.7%) represented public health problems, whereas prevalence of anemia (11.661.0%) and iron deficiency (ID, 13.761.1%) were considered low, and folate (,3%) and vitamin A (VAD,,2%) deficiencies were considered negligible. However, many women had marginal folate (25.1%) and vitamin A status (13.6%). Moreover, overweight (BMI$23 kg/m 2 for Asian population) or underweight occurred in 20 % of women respectively highlighting the double burden of malnutrition. In children, a similar pattern was observed for ZnD (51.963.5%), anemia (9.161.4%) and ID (12.961.5%) whereas prevalence of marginal vitamin A status was also high (47.362.2%). There was a significant effect of age on anemia and ID prevalence, with the youngest age group (6–17 mo) having the highest risk for anemia, ID, ZnD and marginal vitamin A status as compared to other groups. Moreover, the poorest groups of population had a higher risk for zinc, anemia and ID
Macro-to-Micro Structural Proteomics: Native Source Proteins for High-Throughput Crystallization
Structural biology and structural genomics projects routinely rely on recombinantly expressed proteins, but many proteins and complexes are difficult to obtain by this approach. We investigated native source proteins for high-throughput protein crystallography applications. The Escherichia coli proteome was fractionated, purified, crystallized, and structurally characterized. Macro-scale fermentation and fractionation were used to subdivide the soluble proteome into 408 unique fractions of which 295 fractions yielded crystals in microfluidic crystallization chips. Of the 295 crystals, 152 were selected for optimization, diffraction screening, and data collection. Twenty-three structures were determined, four of which were novel. This study demonstrates the utility of native source proteins for high-throughput crystallography
- …