64 research outputs found

    Ibrutinib restores immune cell numbers and function in first-line and relapsed/refractory chronic lymphocytic leukemia

    Get PDF
    © 2020 The Authors Ibrutinib positively modulates many T-cell subsets in chronic lymphocytic leukemia (CLL). To understand ibrutinib\u27s effects on the broader landscape of immune cell populations, we comprehensively characterized changes in circulating counts of 21 immune blood cell subsets throughout the first year of treatment in patients with relapsed/refractory (R/R) CLL (n = 55, RESONATE) and previously untreated CLL (n = 50, RESONATE-2) compared with untreated age-matched healthy donors (n = 20). Ibrutinib normalized abnormal immune cell counts to levels similar to those of age-matched healthy donors. Ibrutinib significantly decreased pathologically high circulating B cells, regulatory T cells, effector/memory CD4+ and CD8+ T cells (including exhausted and chronically activated T cells), natural killer (NK) T cells, and myeloid-derived suppressor cells; preserved naive T cells and NK cells; and increased circulating classical monocytes. T-cell function was assessed in response to T-cell receptor stimulation in patients with R/R CLL (n = 21) compared with age-matched healthy donors (n = 18). Ibrutinib significantly restored T-cell proliferative ability, degranulation, and cytokine secretion. Over the same period, ofatumumab or chlorambucil did not confer the same spectrum of normalization as ibrutinib in multiple immune subsets. These results establish that ibrutinib has a significant and likely positive impact on circulating malignant and nonmalignant immune cells and restores healthy T-cell function

    Prophylactic Intra-Aortic Balloon Counterpulsation in High Risk Cardiac Surgery: The PINBALL Pilot Multicentre, Registry-Linked, Randomised, Controlled Feasibility Trial

    Full text link
    Background: Prophylactic intra-aortic balloon counterpulsation (IABC) is commonly used in selected patients undergoing coronary artery bypass graft (CABG) surgery, but definitive evidence is lacking. The aim of the multicentre PINBALL Pilot randomised controlled trial (RCT) was to assess the feasibility of performing a definitive trial to address this question. Methods: Patients listed for CABG surgery with impaired left ventricular function and at least one additional risk factor for postoperative low cardiac output syndrome were eligible for inclusion if the treating surgical team was uncertain as to the benefit of prophylactic IABC. The primary outcome of feasibility was based on exceeding a pre-specified recruitment rate, protocol compliance and follow-up. Results: The recruitment rate of 0.5 participants per site per month did not meet the feasibility threshold of two participants per site per month and the study was stopped early after enrolment of 24 out of the planned sample size of 40 participants. For 20/24 (83%) participants, preoperative IABC use occurred according to study assignment. Six (6)-month follow-up was available for all enrolled participants, [IABC 1 death (8%) vs. control 1 death (9%), p = 0.95]. Conclusion: The PINBALL Pilot recruitment rate was insufficient to demonstrate feasibility of a multicentre RCT of prophylactic IABC in high risk patients undergoing CABG surgery

    The sixth international RASopathies symposium: Precision medicine—From promise to practice

    Get PDF
    The RASopathies are a group of genetic disorders that result from germline pathogenic variants affecting RAS‐mitogen activated protein kinase (MAPK) pathway genes. RASopathies share RAS/MAPK pathway dysregulation and share phenotypic manifestations affecting numerous organ systems, causing lifelong and at times life‐limiting medical complications. RASopathies may benefit from precision medicine approaches. For this reason, the Sixth International RASopathies Symposium focused on exploring precision medicine. This meeting brought together basic science researchers, clinicians, clinician scientists, patient advocates, and representatives from pharmaceutical companies and the National Institutes of Health. Novel RASopathy genes, variants, and animal models were discussed in the context of medication trials and drug development. Attempts to define and measure meaningful endpoints for treatment trials were discussed, as was drug availability to patients after trial completion

    Cancer stem cell drugs target K-ras signaling in a stemness context

    Get PDF
    Cancer stem cells (CSCs) are considered to be responsible for treatment relapse and have therefore become a major target in cancer research. Salinomycin is the most established CSC inhibitor. However, its primary mechanistic target is still unclear, impeding the discovery of compounds with similar anti-CSC activity. Here, we show that salinomycin very specifically interferes with the activity of K-ras4B, but not H-ras, by disrupting its nanoscale membrane organization. We found that caveolae negatively regulate the sensitivity to this drug. On the basis of this novel mechanistic insight, we defined a K-ras-associated and stem cell-derived gene expression signature that predicts the drug response of cancer cells to salinomycin. Consistent with therapy resistance of CSC, 8% of tumor samples in the TCGA-database displayed our signature and were associated with a significantly higher mortality. Using our K-ras-specific screening platform, we identified several new candidate CSC drugs. Two of these, ophiobolin A and conglobatin A, possessed a similar or higher potency than salinomycin. Finally, we established that the most potent compound, ophiobolin A, exerts its K-ras4B-specific activity through inactivation of calmodulin. Our data suggest that specific interference with the K-ras4B/calmodulin interaction selectively inhibits CSC.Peer reviewe
    corecore