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Cancer stem cell drugs target K-ras signaling in a stemness
context
AK Najumudeen1, A Jaiswal2,4, B Lectez1,4, C Oetken-Lindholm1, C Guzmán1, E Siljamäki1, IMD Posada1, E Lacey3, T Aittokallio2

and D Abankwa1

Cancer stem cells (CSCs) are considered to be responsible for treatment relapse and have therefore become a major target in
cancer research. Salinomycin is the most established CSC inhibitor. However, its primary mechanistic target is still unclear, impeding
the discovery of compounds with similar anti-CSC activity. Here, we show that salinomycin very specifically interferes with the
activity of K-ras4B, but not H-ras, by disrupting its nanoscale membrane organization. We found that caveolae negatively regulate
the sensitivity to this drug. On the basis of this novel mechanistic insight, we defined a K-ras-associated and stem cell-derived gene
expression signature that predicts the drug response of cancer cells to salinomycin. Consistent with therapy resistance of CSC, 8%
of tumor samples in the TCGA-database displayed our signature and were associated with a significantly higher mortality. Using our
K-ras-specific screening platform, we identified several new candidate CSC drugs. Two of these, ophiobolin A and conglobatin A,
possessed a similar or higher potency than salinomycin. Finally, we established that the most potent compound, ophiobolin A,
exerts its K-ras4B-specific activity through inactivation of calmodulin. Our data suggest that specific interference with the
K-ras4B/calmodulin interaction selectively inhibits CSC.

Oncogene (2016) 35, 5248–5262; doi:10.1038/onc.2016.59; published online 14 March 2016

INTRODUCTION
Cancer stem cells (CSCs) are defined as tumor-initiating cells with
a self-renewal capacity similar to that of normal stem cells.1

According to the CSC model, CSCs are at the top of the tumor cell
hierarchy. Their defining molecular characteristics as well as
whether they emerge from transformed stem/progenitor cells,
dormant tumor cells or via epithelial–mesenchymal transition
(EMT) are still a matter of intense debate.2,3 CSCs are thought to
be particularly resistant to standard chemotherapeutic agents and
are considered to be responsible for relapse after therapy.4,5

Therefore, CSCs have become the intense focus of more effective
therapeutic strategies. Gupta et al.6 have identified salinomycin
as being more than 100-fold more potent against human breast
CSC than conventional chemotherapeutics. Subsequent studies
supported that salinomycin could be a promising CSC inhibitor
also for other cancer types, and its potential value in therapy-
resistant tumors.7,8

Different molecular targets have been proposed for the specific CSC
activity of salinomycin, suggesting significant polypharmacology.7

Notably, the P-glycoprotein, which is implicated in multi-drug
resistance,9 and the Wnt pathway, a canonical stem cell signaling
pathway,10 are plausible targets that may ultimately lead to the
induction of apoptosis.11 However, these targets have not helped
to establish the exact mechanism of action of salinomycin. In
particular, it remains unclear which cancer types and patients
would show the highest benefit from the salinomycin therapy.
It is largely unknown how the Ras signaling pathway is wired

within CSC or embryonal stem cells (ESC) and whether it could
be specifically targeted by small molecules. Mutations in the Ras

signaling pathway are a hallmark of cancer.12 For Ras itself to
function, it must be anchored to the plasma membrane.13 Notably,
interference with Ras membrane organization has experimentally
been by far more successful than its direct small molecule
targeting.14 On the membrane, Ras isoforms H-ras and K-ras4B
(hereafter K-ras) are laterally segregated into submicroscopic
signaling hubs, termed nanocluster.15 Nanocluster concentrate six
to eight Ras proteins and are indispensable for its signaling, as
they represent sites for the recruitment of downstream effectors,
such as Raf-kinases, that have a high off-rate.16,17 Nanoclustering
of K-ras, but not H-ras, depends on phosphatidylserine (PS).18

Moreover, either the expression of H-rasG12V or the presence of
caveolae can critically perturb the PS distribution, thus decreasing
K-ras nanoclustering and signaling output.18,19

Because of the critical role of nanoclustering for Ras signaling, we
have previously developed a cell-based assay that exploits the
emergence of FRET from fluorescently tagged Ras proteins, when
they are tightly packed in nanocluster (nanoclustering-FRET).20 This
assay allowed us to identify the modulators of nanoclustering20 as
well as the inhibitors of processes upstream of nanoclustering, such
as membrane targeting and lipid modifications (for example, statins
or farnesylation inhibitors).21–23 These results illustrate that modula-
tion of the nanoclustering-FRET signal can be due to multiple
reasons that may involve direct modulation of the membrane,20

lateral segregation changes of the FRET-probe,24 conformational
changes25 or indirect, intracellular processes.22

Here, we utilized this nanoclustering-FRET assay to differentially
screen chemical libraries with K- and H-ras-derived FRET
biosensors. We identified previously established CSC inhibitors
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such as salinomycin, and found that salinomycin affects PS
nanoscale distribution, thus decreasing K-ras nanoclustering and
its effector recruitment. On the basis of this mechanistic insight,
we derived a K-ras-associated gene expression signature that is
predictive of the salinomycin potency in cancer cell lines and
mortality in patients. Importantly, our mechanism-based screening
platform enabled us to identify a number of new candidate CSC
inhibitors. We demonstrate that the highly potent ophiobolin A
interferes with K-ras activity via the inhibition of calmodulin (CaM)
as its direct target. Our results suggest that our differential
screening approach is highly suitable to identify novel candidate
CSC inhibitors.

RESULTS
Differential screening with K- and H-ras nanocluster FRET
biosensors identifies CSC inhibitors
The nanoscale packing of Ras proteins on the plasma membrane,
termed nanoclustering, is necessary for Ras signaling.17,26 In specific
cancer cases, nanoclustering can be exploited to hyperactivate Ras,27

therefore representing a potential target to suppress hyperactive Ras
in cancer. We recently identified ionophoric macrotetrolides/nactins
as disruptors of H-ras associated nanocluster.20 Owing to their ability
to insert into the plasma membrane, ionophores may be good
candidates for nanocluster disruptors. We therefore tested here a
small collection of 13 ionophoric compounds using our previously
established NANOcluster and Prenylation Sensors (NANOPS) FRET
assay in mammalian cells. In this assay, we exploit the FRET, which
arises because of nanoclustering of membrane-anchored fluorescent
proteins (nanoclustering-FRET) (Figure 1a).
H- and K-ras were shown to segregate into distinct nanodo-

mains, from where distinct signaling output emanates.28

To identify Ras-isoform-specific inhibitors and to filter out more
trivial activities, such as inhibition of prenylation by statins,
we performed differential screening with two Ras-derived
biosensors H-ras-NANOPS (H-ras derived20) and K-ras-NANOPS
(K-ras derived29).
BHK cells transiently expressing either of these biosensors were

incubated with compounds and then analyzed using our well-
established flow cytometry FRET assay (Figure 1b).20,21,23,29,30

Three compounds, salinomycin, nigericin and lasalocid, changed
the nanoclustering-associated FRET-parameter Emax by at least
15% specifically for K-ras-NANOPS and were thus selected as hits
for further evaluation (Figure 1c). Interestingly, the compound
activity did not seem to correlate with the ion selectivity,
as compounds with similar ion selectivity were not identified as
hits (Supplementary Table 1). This suggests a mechanism of action
that does not relate to the ionophoric activity.

CSC inhibitors perturb the nanoscale membrane organization of
PS and Ras
The three hit compounds are known and in use for their
antibiotic/anticoccidial activity.31 More interestingly in the cancer
context is that salinomycin and nigericin have been identified as
CSC inhibitors.6 CSCs are necessary for tumor initiation and are
linked to relapse after therapy, because of their exquisite resistance
against standard antiproliferative cancer drugs. Therefore, CSC
inhibitors bear an exceptional significance as future anti-cancer
drugs. However, their exact molecular target remains controversial.
Likewise, it is not resolved whether they truly target a ‘stemness’
feature and which patients would benefit from treatment.
To explore a K-ras associated mechanism of action of our hit

compounds, we validated their specific activity on full length K-
or H-rasG12V. For both proteins, FRET pairs were generated and
co-expressed in BHK cells to measure isoform-specific nanocluster-
ing-FRET using fluorescence lifetime imaging microscopy (FLIM).
Salinomycin and lasalocid specifically reduced nanoclustering-FRET

of K-rasG12V (Figures 2a and c), while nigericin also reduced FRET of
H-rasG12V (Figures 2b and c).
In our nanoclustering-FRET assays, the loss of FRET can be due

to changes in Ras nanoclustering, subcellular redistribution or
loss of membrane anchorage (Figure 1a). Confocal imaging of
MDCK cells stably expressing mGFP-tagged K- or H-rasG12V
revealed that all compounds led to a strong loss of plasma
membrane labeling and perinuclear redistribution of both Ras
isoforms (Figure 2d). Similar observations were made in transiently
transfected BHK cells (Supplementary Figure 1a).
Recently, low nanomolar concentrations of staurosporine (STS)

were described to affect nanoclustering and subcellular distribu-
tion of K-ras32 (Supplementary Figures 1a and b). This activity
was reminiscent of that of our hit compounds. Mechanistically,
STS redistributes cellular PS from the plasma membrane to
endomembranes.32 The negatively charged PS is critical for plasma
membrane anchorage and clustering of K-ras, which possesses
a polybasic (positively charged) C-terminal membrane anchor.18

We therefore assayed for a similar effect of our hit compounds on
PS nanoscale organization and coclustering with Ras. To this end, we
used the fluorescently tagged C2 domain of lactadherin (LactC2),
which binds to PS.33 All compounds significantly decreased
nanoclustering-FRET of PS in BHK cells (Supplementary Figure 1b).
Interestingly, only salinomycin had a specific effect on coclustering
of PS and K-rasG12V (Figure 2e), but not on PS/H-rasG12V (Figure 2f),
while the other compounds, including the tool compound STS,
decreased PS coclustering FRET with both K- and H-rasG12V. This
K-ras-specific activity of salinomycin may be significant, as the
overexpression of H-rasG12V negatively regulates K-ras nanocluster-
ing via segregation of PS.18 Thus, H-rasG12V nanoclustering
antagonizes an increase in K-ras nanoclustering and signaling.
We conclude that our hit compounds predominantly disrupt

K-ras nanoscale membrane organization by decreasing nanoscale
PS clustering, while they also affect compound-specifically PS/Ras
coclustering.

Salinomycin most specifically reduces K-ras activity
We next followed up on the downstream consequences of K-ras
nanoscale disruption by the hit compounds. An essential step
in Ras/MAPK signal propagation is the recruitment of the effector
Raf to the plasma membrane by active, nanoclustered Ras.16

We have previously established a FRET assay, where we co-
expressed mGFP-tagged RasG12V with the mRFP-tagged Ras-
binding domain (RBD) of the effector C-Raf in BHK cells, to
quantify the effector recruitment step.17,29,34

All three hit compounds significantly and specifically reduced
FRET between K-rasG12V and the RBD (Figure 3a), but not
between H-rasG12V and the RBD (Figure 3b). This was associated
with a specific reduction in downstream MAPK signaling output of
K-rasG12V (Figure 3c)- but not H-rasG12V (Figure 3d)-transfected
BHK cells by the hit compounds. In line with a significant role of
MAPK signaling in cell growth, proliferation of non-transfected
BHK cells was efficiently suppressed by salinomycin and nigericin
(Figure 3e).
These data suggest that salinomycin, the most potent CSC

inhibitor with potential efficacy in human cancers,8 specifically
disrupts K-ras nanoscale membrane organization. This effectively
reduces effector recruitment to K-ras, which then compromises at
least MAPK signaling and proliferation.

High caveola levels decrease the sensitivity to salinomycin
When validating the activity of our hits in HEK cells using
Ras-NANOPS, the activity of the hit compounds was lost
(Supplementary Figures 2a and b). To explain this, we focused
our attention on the different abundance of caveolae in these cell
lines as it was recently shown that downregulation of caveolae
perturbs the lipid composition of the plasma membrane. This
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leads to an increase in PS clustering and as a consequence of K-ras
nanoclustering and signaling output, while H-ras nanoclustering
remains unaffected19 (Supplementary Figure 2c). Caveolin-1 (Cav-1)
and PTRF/cavin-1 are the two major protein components of cellular
caveolae.35,36 We therefore tested whether reexpression of Cav-1
and PTRF in HEK cells could restore the K-ras-directed activity of the
hit compounds that was observed in BHK cells.
Caveolae are 50–80 nm in size, which required us to quantify

caveolae levels in HEK and BHK cells using stimulated emission
depletion (STED)-superresolution microscopy37 (Figure 4a). HEK
cells had a significantly lower number of caveolae than BHK cells
(Figure 4b). As expected, transient reexpression of Cav-1 together
with PTRF increased the number of caveolae in HEK cells to the
same level as that found in BHK cells. In agreement with the data
by Ariotti et al.,19 this treatment significantly reduced K-rasG12V
nanoclustering-FRET (Figure 4c), while H-rasG12V nanoclustering
remained unchanged (Figure 4d). Owing to its lower potency
(Figure 3e), we excluded lasalocid from subsequent experiments.
Reexpression of the caveolar proteins did not significantly affect
the H-ras nanoclustering-FRET response to either salinomycin or
nigericin. By contrast, the K-ras nanoclustering-FRET was highly

significantly reduced by salinomycin, while that of nigericin
remained at the same low level as in control HEK cells. This effect
of caveolar protein reexpression to specifically sensitize K-ras but
not H-ras activity to salinomycin was also seen on the level of
effector recruitment (Figures 4e and f). In agreement with these
FRET data, Cav-1 and PTRF expression specifically desensitized
HEK cells (Figure 4g), but not BHK cells (Figure 4h) to salinomycin.
This effect is consistent with our observations in Figure 3e, as
also H-rasG12V negatively regulates PS and therefore K-ras-
nanoclustering18 similar to caveolae.
Thus, salinomycin but not nigericin clearly discriminates between

normal HEK cells and those with caveolar protein overexpression.

A K-ras-nanocluster gene expression signature is predictive for
sensitivity to salinomycin and patient survival
It is important to distinguish between the ease to observe the
K-ras isoform specificity of salinomycin by FRET (in caveolae-rich
BHK cells, with little free PS) and the dependence of the cell
proliferation on a high K-ras signaling level (in caveolae-poor
HEK cells, with relatively higher PS and higher K-ras nanocluster-
ing). The latter renders HEK cells ∼ 8 times more sensitive to the
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Figure 1. Differential screening identifies CSC inhibitors. (a) Schematic representation of the FRET assay, which reports on nanoclustering
and subcellular distribution changes of Ras-derived biosensors (NANOPS). NANOPS exploit the high FRET associated with nanoclustering
of fluorescently tagged membrane anchors of H-ras or K-ras4B. (b) Scheme of chemical screen workflow. (c) Scatter plot of the chemical screen
with BHK cells expressing K- and H-ras-NANOPS. Emax values of cells treated for 24 h with 1 μg/ml (black dots) and 2 μg/ml (green dots) of
compounds (see Supplementary Table 1) are shown. Bars denote the s.e.m. from three independent experiments. Block line indicates the
average Emax (K-ras-NANOPS, 0.32; H-ras-NANOPS, 0.40), dotted lines mark the hit selection threshold of 15% change from the average Emax.
Arrows indicate the hits. Identity, compound number and chemical structures of the hits are represented below.
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PS/K-ras coclustering disrupting salinomycin (IC50 (HEK) = 0.63 μM)
as compared with BHK cells (IC50 (BHK) = 4.9 μM).
In an effort to apply this insight to cancer cells, we wanted

to establish a relationship between the absolute potency of
salinomycin and factors such as caveolae that are known to
impact on the nanoscale membrane organization (nanoclustering)
of K-ras (Supplementary Table 2).
We therefore first examined the expression patterns of genes

that are associated with Ras and their nanoclustering in ESC,
assuming that CSC inhibitors might target molecular features
of a normal ESC. We compared the expression of all three Ras
isoforms, the EGFR38 and the six genes of known K-ras nanocluster

modulators (Supplementary Table 2) in fibroblasts and human
ESCs, using gene expression profiles from the stem cell database
ESTOOLS.39 We found that all fibroblasts display a relatively similar
expression signature, which is basically inverted in a large set
of ESCs. Altogether, we recognized three distinct sets of ESC
expression signatures characteristic for naive ESC, primed ESC40

and those that appeared to be in transit between these two states
(Supplementary Figure 3a).
We next extended these expression signatures by searching

the ESTOOLS database for additional genes that showed a
co-expression pattern with the initial set of 10 genes (see Online
Methods for details). From this list of 32 co-expressed genes

H-ras H-ras

LasalocidNigericinSalinomycincontroldonor-only

K
-r

as
G

12
V

H
-r

as
G

12
V

st
ab

le
 M

D
C

K
 

control Salinomycin Nigericin Lasalocid

H
-r

as
G

12
V

K
-r

as
G

12
V

PS / K-rasG12V co-clustering PS / H-rasG12V co-clustering

2.4 ns

1.7 ns

flu
or

es
ce

nc
e 

lif
et

im
e

2 4 6 8
Lasalocid
Nigericin

Salinomycin
STS

control

apparent FRET efficiency (%)

127
78

104
46
34

****
****
****
**

4 5 6 7 8
Lasalocid
Nigericin

Salinomycin
STS

control

apparent FRET efficiency (%)

125
96

121
38
40

ns
**

****

***

6 8 10

Lasalocid

Nigericin

Salinomycin

control

apparent FRET efficiency (%)

174

83

78

89

****

10 15 20

Lasalocid

Nigericin

Salinomycin

control

apparent FRET efficiency (%)

140

83

55

62
****

K-ras K-ras

K-ras H-ras

FRET

PS

FRET

FRET FRET

Figure 2. CSC inhibitors affect K-rasG12V nanoclustering in a PS-dependent manner. (a and b) Nanoclustering-FRET analysis (illustrated in
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FLIM-FRET images of BHK cells from nanoclustering-FRET experiments as indicated. Image color look-up table on the right shows fluorescence
lifetimes. (d) Confocal images of MDCK cells stably expressing mGFP-K-rasG12V or mGFP-H-rasG12V treated with the inhibitors for 24 h.
Representative images of treatments from three independent experiments are shown. Scale bar, 20 μm. (e and f) Co-clustering FRET analysis
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the bars indicate the number of analyzed cells. Statistical significance of differences between control and treated cells were examined using
one-way ANOVA tests (n.s., not significant; **Po0.01; ***Po0.001; ****Po0.0001).
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(Supplementary Table 3), we selected vimentin (VIM), caveolin-2
(Cav-2) and integrin αV (ITGA5) as the most plausible genes to
be associated with K-ras nanocluster and stemness regulation.
Strikingly, unsupervised clustering of this extended panel

of genes separated them consistent with K-ras nanoclustering
being high in ES cells and low in differentiated cells/fibroblasts
(Figure 5a; Supplementary Figure 3a). These results prompted
us to test whether salinomycin targets K-ras in cancer cell lines in
a gene expression context similar to that of primed human ESCs.
Conversely, such cell lines should be more resistant to conven-
tional chemotherapeutics.6

By correlating the expression profiles of our set of 13
predominantly K-ras-nanoclustering genes (hereafter K-ras-
nanoclustering signature) from cancer cell lines in the cancer
cell line encyclopedia (CCLE) database,41 ESCs and fibroblasts,
we identified specific cancer cell lines whose K-ras-nanocluster-
ing signature was either more ESC-like or more fibroblast-like
(Figure 5b, Supplementary Figure 4).
Sensitivity profiles of salinomycin and a selected conventional

chemotherapeutic drug (STS) across 15 cancer cell lines revealed
that those cell lines predicted to have a more ESC-like signature
typically showed a higher sensitivity to salinomycin than the
cell lines with a fibroblast-like signature (Figure 5c; P= 0.051,

Wilcoxon rank sum test). Consistent with our prediction, the
opposite was found for their sensitivity to STS (Figure 5d);
P= 0.067. This was further supported by correlating the drug
response profiles with the gene expression signature, which
confirmed that the salinomycin response showed a positive trend
of association with KRAS expression, but negative in particular
with the expression of caveolar genes (Cav-1, Cav-2, PTRF)
(Figure 5e). Strikingly, the STS response showed predominantly
the opposite correlation pattern with the gene expression
signature (Figure 5e; P= 0.0024, Wilcoxon signed rank test). These
data suggested that our K-ras-nanoclustering signature could
predict the sensitivity of cancer cell lines to the CSC inhibitor
salinomycin.
Interestingly, a substantial fraction ~8% (605/7536) of the patient

tumor samples in The Cancer Genome Atlas (TCGA) database
exhibited an ESC-like and therefore CSC inhibitor sensitive K-ras-
nanoclustering signature (at Spearman rank correlation coefficient
cutoff of 0.6; see Methods for details), which was also associated
with a significant negative effect on the overall survival (Figure 5f,
Cox proportional hazard ratio (95% confidence interval) = 1.36
(1.06–1.73), P=0.013). Interestingly, this effect was even more
significant, when the ESC-like cancer cell line expression data
were used (Supplementary Figure 3b, Cox proportional hazard ratio
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(95% confidence interval) = 1.27 (1.10–1.46), P=8.8× 10−4). This is
consistent with our assumption that tumors with the K-ras-
nanoclustering signature contain a high number of CSC or CSC-
like cells, which are refractory to conventional therapy and/or
mediating more aggressive cancers. Intriguingly, among these
tumor samples with an ESC-like signature, we found enrichment for

cancer types of the female reproductive tissue with the highest
proportion in breast cancer, as well as a relatively high proportion
and high enrichment for acute myeloid leukemia (Supplementary
Table 4).
In summary, we have identified a panel of only 13 genes (the

K-ras-nanoclustering signature) that can predict the sensitivity of
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cancer cell lines to the CSC inhibitor salinomycin. Importantly, this
gene expression signature was also associated with poorer
survival outcome in patients with cancers in particular of the
female reproductive tissue.

Additional compound screening identifies ophiobolins and
conglobatin A as new candidate CSC inhibitors
To demonstrate that our K-ras-focused screening platform allows
for the identification of novel compounds with anti-CSC activity,
we conducted a second screen with a chemically more diverse
library of ~ 400 microbial metabolites (Supplementary Figure 5a).
In concordance with our previous screening results,20 nactins/

macrotetrolides were again identified as H-ras-NANOPS specific
hits (Supplementary Table 5). Moreover, among the hit com-
pounds that positively affected the K-ras-NANOPS FRET were
a number of STS derivatives, consistent with our observations with
STS as a tool compound that affects PS nanoclustering and PS/Ras

coclustering (Figure 2, Supplementary Figure 1b). The positive
deviation of the NANOPS FRET is specific to the cytometer FRET
method and may relate to the distribution of the biosensor
to internal membranes. Importantly, we found avermectin,
which was also identified in the CSC inhibitor screen by Gupta
et al. as abamectin (a mixture of avermectin B1a and B1b),
and its derivative ivermectin. Thus, out of the four compounds
that were more closely studied by Gupta et al., we have
identified three.
Despite the relatively small size of our compound library,

five substance classes (leptomycins, avermectins, ophiobolins,
conglobatin and streptonigrin) with some selectivity for the K-ras-
NANOPS were found (Supplementary Table 5). We included at
least one representative from each substance class for validation,
thus ending up with a selection of seven new compounds that
were assessed for their potential as CSC inhibitors (Supplementary
Table 6). First, we validated their Ras-isoform selectivity. All
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Figure 5. A K-ras-nanoclustering signature predicts cancer cell line sensitivity to salinomycin and patient survival. (a) List of definitive
K-ras-nanoclustering-associated genes and their relative expression in fibroblasts and ESCs. Bottom, expected K-ras signaling outcome.
(b) Expression profiles of cancer cell lines with either ESC-like or fibroblast-like K-ras-nanoclustering signature. (c and d) Drug sensitivity
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gene expression signatures similar to ESCs (n= 605) vs fibroblasts (n= 402).
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Figure 6. K-ras-specific screening identifies new candidate CSC inhibitors. (a and b) Nanoclustering-FRET analysis in BHK cells co-expressing
mGFP- and mCherry-tagged (a) K-rasG12V or (b) H-rasG12V. The apparent FRET efficiency was calculated from FLIM data (mean± s.e.m., n= 3).
Cells were treated for 24 h with either DMSO control, 1.3 μM salinomycin or 0.2 μM of avermectin, ivermectin, conglobatin A, ophiobolin A,
kazusamycin B, leptomycin B or streptonigrin. Inhibitors are color-coded by chemical class as in Supplementary Table 4. Red dotted line
denotes the average response with salinomycin as positive control. Numbers in the bars indicate the number of analyzed cells. Statistical
significance of differences between control and treated cells was examined using one-way ANOVA (**Po0.01; ***Po0.001; ****Po0.0001).
(c) Left, CD44/CD24 FACS profiles are shown for MDA-MB-231 after compound treatments. The green ellipse denotes the CD44+/CD24− breast
CSC fraction and the dotted-black ellipse marks the CD44+/CD24+ fraction. Right, shown is the average percentage of CD44+/CD24− MDA-MB-231
cells after treatment for 4 days with either DMSO control, 100 ng/μl doxorubicin, 10 nM STS or 2.0 μM of salinomycin, avermectin, ivermectin,
conglobatin A, ophiobolin A, leptomycin B, kazusamycin B and streptonigrin. Error bars denote the s.e.m. from three independent experiments
performed in duplicate. Statistical significance of differences between doxorubicin treated and cells treated with other compounds were
examined using one-way ANOVA complemented with Tukey’s test (***Po0.001). (d) Left, mammosphere formation efficiency of
MDA-MB-231, MDA-MB-436, Hs578T and MCF7 cells grown in non-adherent conditions. Mammospheres were allowed to form for 6 days and
treated for 3 additional days with either DMSO control or the indicated compounds (mean± s.e.m., n=4). Right, representative images of
mammospheres as indicated. Bar represents 1000 μm. Statistical significance of differences between doxorubicin-treated and cells treated with
other compounds were examined using one-way ANOVA complemented with Tukey’s test (n.s., not significant; **Po0.01; ***Po0.001;
****Po0.0001).
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compounds significantly decreased K-rasG12V nanoclustering-FRET
(Figure 6a). In contrast, H-rasG12V nanoclustering-FRET remained
largely unaffected, except under leptomycin B and streptonigrin
treatment (Figure 6b). This activity profile was basically also reflected
by the effect of the compounds on effector recruitment-FRET, with
almost all compounds significantly reducing FRET of K-rasG12V/RBD,
but not of H-rasG12V/RBD (Supplementary Figure 5b). Unlike with
the ionophores that were found in the first screen (Figure 2d),
subcellular distribution of K-rasG12V or H-rasG12V remained
apparently unaffected (Supplementary Figure 5c).
To evaluate the potential of these compounds as CSC inhibitors,

we next studied their effect on the CD44+/CD24− (invasive,
mesenchymal) CSC population that is naturally found in the MDA-
MB-231 breast cancer cell line, using a fluorescence-activated cell
sorting (FACS)-based assay.42 Both conglobatin A and ophiobolin
A decreased the CD44+/CD24− population to a comparable
or higher extent than salinomycin (Figure 6c).
This CSC-specific activity was confirmed by growing mammary

cancer cells under non-adherent conditions as mammospheres,
a well-established model for CSC.43 MDA-MB-231, MDA-MB-436,
Hs578T and MCF7 grown under non-adherent conditions
formed mammospheres with comparable efficiencies, albeit they
contained different fractions of CD44+/CD24− cells as established
by others (MDA-MB-231≈Hs578T4MDA-MB-436, none in MCF7)
(Supplementary Table 7).42

In agreement with the different stemness characteristics of these
cell lines, we found that they expressed stemness marker Oct3/4
at high levels already when grown under adherent conditions
(MDA-MB-231, Hs578T) or only when grown as mammospheres
(MCF7). Stemness marker Sox2 was detected only at low levels
under both conditions, while also NANOG expression somewhat
increased for MDA-MB-436 and MCF7 cells, while expression
remained low for the two other cell lines (Supplementary Figure 6a).
Specific stemness characteristics were also reflected in the

response to CSC drug treatment. Only mammospheres that were
derived from cell lines with a high CD44+/CD24− population
(MDA-MB-231, MDA-MB-436, Hs578T) responded selectively to
salinomycin, conglobatin A and ophiobolin A as compared with
doxorubicin (Figure 6d). Interestingly, ophiobolin A was most
potent in both the K-rasG13D-mutated MDA-MB-231 and in the
H-rasG12D-mutated Hs578T mammospheres. Both of these cell
lines belong to the highly aggressive basal-like, claudin-low, triple
negative type (Supplementary Table 7). Note that the apparent
potency of ophiobolin A in MDA-MB-231 cells grown under
adherent conditions was only slightly lower as compared with that
in mammospheres (Supplementary Figure 6b), which is consistent
with the high fraction of CD44+/CD24− cells in that cell line.
Collectively, these results demonstrate that ophiobolin A is

a highly potent inhibitor of mammospheres derived from the
most aggressive breast cancer cell lines.

Identification of CaM as the K-ras-directed target of ophiobolin A
Ophiobolin A is a potent CaM inhibitor, which modifies lysines 75
or 77 and 148 by covalent Schiff base bond formation.44 The
McCormick group45 very recently proposed that blocking of the
K-ras/CaM interaction might represent a novel approach to
specifically interfere with K-ras signaling in cancer. We therefore
tested, whether the inhibition of CaM can suppress mammosphere
formation. Indeed, CaM inhibitors W7 and with high efficiency also
calmidazolium reduced the growth of MDA-MB-231-derived mam-
mospheres (Figure 7a). This effect was phenocopied by siRNA-
mediated depletion of CaM (Figure 7a; Supplementary Figure 6c).
To provide proof for CaM as the decisive target of ophiobolin A,

we evaluated the effect of ophiobolin A on K-ras nanoclustering-
FRET in HEK cells expressing wild-type or ophiobolin resistant
CaM. First, siRNA-mediated down-modulation of CaM led to a loss
of FRET identical to that of cells treated with ophiobolin A

(Figure 7b). This loss of FRET could be fully rescued by both
wild-type CaM and CaM carrying mutations K75Q, K77Q, K148Q
(mut-CaM), which render it ophiobolin A-resistant.44 Correspond-
ingly, only rescued cells expressing the wild-type CaM responded
to ophiobolin A, while those rescued with mut-CaM were not
showing any decrease of FRET (Figure 7b). Importantly, the same
experiment carried out with conglobatin A showed that mut-CaM
rescued cells still responded with a loss of FRET to it, demonstrat-
ing the ophiobolin A specificity and indicating that conglobatin A
has a different mechanism of action and probably an entirely
different target than ophiobolin A (Supplementary Figure 6d).
In summary, these results suggest that the anti-CSC potential
of ophiobolin A is due to its inhibitory effect on CaM-supported
K-ras membrane organization.
Direct comparison of ophiobolin A and conglobatin A indicated

that ophiobolin A is more potent in inhibiting mammosphere
formation (Figure 7c). Remarkably, ophiobolin A showed a drug-
response profile with very similar trends of association with gene
expression as salinomycin (P= 0.039, Wilcoxon signed rank test,
for pairwise difference between the expression correlation of
ophiobolin A and STS over the 13 K-ras-nanoclustering signature
genes; Supplementary Figure 6e). In particular, the negative trend
with negative regulators of K-ras nanoclustering (HRAS, PTRF,
Cav-1, Cav-2) was similar to what we found for salinomycin
(Figure 5e). In addition, also a positive trend with positive
regulators (NCL, NPM1) was seen, which may relate to its higher
potency.
To understand the structural determinants for the potency of

ophiobolin A, we established a small structure activity relationship
series by testing two additional ophiobolins. While ophiobolin A
and B had a similar potential in reducing the CD44+/CD24− CSC
population, ophiobolin C had almost lost its activity (Figure 7d).
These results therefore tentatively suggest that oxygen 13 is
required for the anti-CSC activity of ophiobolin A and B.
In conclusion, our differential nanoclustering-FRET-based

screening approach enabled us to identify ophiobolin A as
a highly potent CSC inhibitor. We furthermore show that CaM
levels affect mammosphere formation and that CaM mediates the
ophiobolin A effect on K-ras.

DISCUSSION
We have established that salinomycin and other known and
potentially new CSC inhibitors specifically block K-ras4B, but not
H-ras activity. The potency of two of these drugs, salinomcyin and
ophiobolin A, depends on the expression of other factors that
impact on the nanoscale membrane organization of K-ras4B,
in particular on caveola levels. Our most potent novel inhibitor,
ophiobolin A, mediates its anti-CSC potential by inhibiting
CaM-dependent K-ras4B membrane organization, strongly sup-
porting a critical role for the complex of CaM and K-ras4B alone or
in complex with PI3Kα as a specific vulnerability in cancer.45,46

Our data suggest that CSC inhibitors need to discriminate
between H-ras and K-ras4B. This is in line with distinct roles of
K-ras4B and H-ras in stem cells, with the former governing stem
cell self-renewal and the latter differentiation.47 Importantly, this
activity was associated with the Ras C-terminus, which also
dictates their nanoscale lateral segregation.29 Lateral segregation
is maintained within a very defined PS-concentration range.18 It is
tempting to speculate that the PS-mediated K-ras4B inhibitory
activity of GTP-H-ras (H-rasG12V) affects stem cell fate. This
molecular mechanism could even provide a new lead to under-
stand the dominating role of mutant K-ras in cancers. Curiously,
N-ras, which is the second most frequently mutated Ras isoform,
appears to be neutral for stem cell differentiation.47 However,
recent data indicate that N-ras bimodally stimulates symmetrical
self-renewal of hematopoetic stem cells in one subset of cells
and in another subset asymmetric division.48 Thus, N-ras would
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combine functionalities of K-ras4B and H-ras. Moreover, based on
our Ras-isoform specificity analysis,34 we would ascribe a similar
function to K-ras4A. In line with this idea, the two-state function of
K-ras4A could be due to different lipid modification states that

either mimic K-ras4B or N-ras.49 Though direct experimental
validation is still missing, it can be expected that such a bimodal
activity of K-ras4A would effectively be masked, considering that it
is equally expressed with K-ras4B.50
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Figure 7. Inhibition of CaM reduces mammosphere formation and K-ras nanoclustering-FRET. (a) Left, mammosphere formation efficiency of
MDA-MB-231 cells or MDA-MB-231 cells pre-transfected with CaM siRNA (siCaM1), grown in non-adherent conditions was determined.
Mammospheres without knockdown were allowed to form for 6 days and then treated for three additional days with either DMSO control or
2 μM of the indicated compounds before being counted (mean± s.e.m., n= 3). Right, representative images of mammospheres as indicated.
Bar represents 1000 μm. Statistical significance of differences between doxorubicin-treated or control (as indicated) and cells treated
with other compounds were examined using one-way ANOVA complemented with Tukey’s test (n.s., non significant; ****Po0.0001).
(b) Nanoclustering-FRET analysis in HEK cells co-expressing mGFP- and mCherry-tagged K-rasG12V. After cells were transfected with
scrambled or CaM siRNA and plasmids for overexpressing wild-type or mutant CaM to rescue the knockdown, they were treated with either
DMSO control or 0.2 μM ophiobolin A for 24 h. The apparent FRET efficiency was calculated from FLIM data (mean± s.e.m., n= 5). Statistical
significance of differences between control and treated cells was examined using one-way ANOVA. (c) Mammosphere formation efficiency of
MDA-MB-231 cells grown in non-adherent conditions. Mammospheres were allowed to form for 6 days and treated for three additional days
with either DMSO control or the indicated concentrations of ophiobolin A and conglobatin A before being counted (mean± s.e.m., n= 3).
Statistical significance of differences between doxorubicin-treated and cells treated with other compounds were examined using one-way
ANOVA complemented with Tukey’s test (****Po0.0001). (d) Left, MDA-MB-231 cells were treated for 3 days with ophiobolin analogs and
conglobatin A, and then their CD44/CD24 population was assessed by flow cytometry. Shown is the percentage of CD44+/CD24− breast CSC
subpopulation after treatment with inhibitors at indicated concentrations (mean± s.e.m., n= 3). Statistical significance of differences between
control and treated cells were examined using one-way ANOVA complemented with Tukey’s test (****Po0.0001). Right, chemical structures
of conglobatin A and ophiobolin analogs A, B and C are presented. The red, dashed square marks the oxygen 13 that correlated with activity
of ophiobolins A and B, but is absent in ophiobolin C.
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There is still considerable debate about whether CSC emerge
from stem cells or through EMT. Clearly, EMT induction can
generate cells with (cancer) stem cell characteristics.2,6,51 It is
possible that our K-ras-centric mechanism would apply also in the
EMT context, as K-ras signaling is at the apex of EMT, where it
controls Wnt pathway induction.52 This may also explain why the
Wnt pathway was previously reported as a salinomycin target.10

On the other hand, very recent data demonstrate that suppression
of the non-canonical Wnt/Ca2+ pathway is essential for the
tumorigenic potential of mutant K-ras.45

Our second important finding implies that loss of caveolae can
sensitize cells in a specific (K-ras-nanoclustering) gene expression
context not only to salinomycin, but also to ophiobolin A, which
does not act via PS but via CaM on K-ras membrane organization.
This significant role of caveolae is consistent with either an EMT or
stem cell model for CSC, as both cells that underwent EMT,53 as
well as stem cells, possess low Cav-1 or caveolae levels.54 In fact,
loss of Cav-1 in stromal breast tumors can expand the stem
cell compartment.55 The loss of stromal Cav-1 is also associated
with a poorer cancer prognosis,56 consistent with a critical role of
caveolae in CSCs. A similar situation exists in prostate cancer,
where PTRF/cavin-1, the other major caveolar protein, is typically
lost with higher aggressiveness. Cav-1 is downregulated in tumor
cells at early stages enhancing proliferation and later upregulated in
metastatic stages. By contrast, it is lost in stromal cells, which
correlates also with higher Gleason score.57 These genetic observa-
tions support a predominant role of caveolae (via PS) and not of
individual caveolar proteins in cancer. It may therefore also be
timely to reconsider the ascribed inhibitory function of Cav-1, which
is in addition not plausible from a structural point of view.58

Of note, salinomycin, nigericin and lasalocid are insecticidal,
antihelmintic and anticoccidial (active against protozoa), as are
many of the compounds that were found as primary hits in our
second screen. Intriguingly, this toxicity spectrum seems to
correlate with the absence of caveolae.59 This may also explain
the relatively high hit rate of ∼ 8% that we have observed with our
library of microbial metabolites and related semi-synthetics, as
microbes share an eco-niche with nematodes and protozoa
and will therefore have evolved defensive strategies against
them. While the compounds in the library displayed diverse
biological activities, a high proportion displays no chemother-
apeutic activity. In line with this, toxicity per se does not qualify
a potent compound in our screen, because metabolites with little
cell toxicity such as the avermectins and conglobatin A are active.
Unfortunately, the lack of caveolae in stem cells is also

suggestive for a general stem cell toxicity of CSC inhibitors. This
has actually been observed for salinomycin,60 and consistently
salinomycin has a low therapeutic index.61 However, our K-ras-
nanoclustering signature may be of particular relevance for the
stratification of a significant fraction of patients (at least 8% based
on our TCGA analysis) that would be predisposed to a higher
mortality and be the most promising responders to salinomycin
and other CSC inhibitors. Analysis of the actual tumor types
that were characterized by an ESC-like expression signature,
revealed an enrichment of this signature in particular in breast
invasive carcinoma, ovarian serous cystadenocarcinoma and
uterine corpus endometrial carcinoma and carcinosarcomas, all
tumors associated with the reproductive system of women
(Supplementary Table 4). This is surprising, given that the
signature originated from ESCs, but is in excellent agreement
with the screening approach that identified salinomycin using
mammary-derived cell lines.6 The only other cancer type that
reached a similarly high and also specific proportion in our
ESC-like set was acute myeloid leukemia. In line with this,
a stemness gene signature that is shared between CSC of acute
myeloid leukemia and hematopoetic stem cells was shown to
predict patient survival.62 Interestingly, this signature shared Cav-1
with our signature.

Owing to their defining role for cell fate, transcription factors
have taken center stage in defining cell lineages and stemness.63

However, signaling processes, which give rise to transcriptional
changes and would therefore be highly relevant for chemical
reprogramming, have lagged behind. The K-ras-associated,
ESC-derived gene set, which defined CSC inhibitor sensitivity,
may furthermore have profound implications for our understanding
of cellular differentiation. It implies that loss of caveolae through
membrane stretching,64 which may occur for instance during
morphogenetic events in the embryo, could contribute to adhesion
matrix-dependent programming of stem cells.65 Our newly
identified candidate CSC inhibitors may therefore not only represent
new starting points for K-ras-drug and CSC inhibitor development,
but also for chemical reprogramming factors.

MATERIALS AND METHODS
DNA constructs and molecular cloning
Plasmids encoding the C-terminal hypervariable region of human H-ras
(H-ras NANOPS; previously referred to as CTH) and C-terminal hypervari-
able region of K-ras (K-ras NANOPS; previously referred to as CTK)
genetically fused to monomeric Cyan Fluorescent Protein and monomeric
Citrine (mCitrine) have been previously described.20,29 pmGFP-H-rasG12V,
pmGFP-K-ras4BG12V and mRFP-RBD of C-Raf have been previously
described.29,34 pmCherry-H-rasG12V and pmCherry-K-rasG12V constructs
were generated by replacing pmGFP from pmGFP-H-rasG12V and pmGFP-
K-rasG12V with pmCherry from pmCherry-C1 vector (Clontech Laboratories
Inc., Mountain View, CA, USA) using NheI and BsrGI restriction sites.
Plasmid pcDNA3.1+N-HA with wild-type human Calmodulin1 (NM 006888)
(wild-type-CaM) and mutant CaM plasmid (mut-CaM) with substitutions
K75Q, K77Q and K148Q were generated by GenScript USA Inc. (Piscataway,
NJ, USA). GFP-LactC2 and RFP-LactC2 plasmids were kind gifts from
Prof John Hancock (University of Texas, Texas). Untagged PTRF-Flag and
Cav-1-HA constructs have been described elsewhere.35

Cell lines and cell culture
Baby Hamster Kidney (BHK21), HEK293 EBNA,66 MDA-MB-436, Hs578T
and MCF7 cells were cultured in Dulbecco’s modified Eagle’s medium
(Sigma–Aldrich, Helsinki, Finland, Cat. No. D6171), containing 10%
fetal bovine serum (PromoCell, Heidelberg, Germany, Cat. No. C-37360),
100 U/ml penicillin (Sigma–Aldrich), 100 μg/ml streptomycin (Sigma–
Aldrich), L-glutamine (Sigma–Aldrich, Cat. No. G7513). MDA-MB-231 were
cultured in RPMI supplemented with 10% horse serum, 5% fetal bovine
serum, L-glutamine, penicillin (100 U/ml) and streptomycin (100 μg/ml). All
cells were and incubated at 37 °C with 5% CO2. Cells were grown to
confluency of 80% (8 × 107 cells) and subcultured every 2–3 days.
MDCK (Madin-Darby canine kidney) cells stably expressing either mGFP-

K- or H-rasG12V were kind gifts from Prof John Hancock (University of
Texas, Texas).32 Cancer cell lines used for sensitivity testing were cultured
and maintained by GenScript human tumor cell line profiling services.

Chemical screening with Ras-NANOPS, data acquisition and
analysis
Chemical screens were performed as recently described.20,21 In brief, BHK
cells were seeded in six-well plates and transfected with Ras-NANOPS
FRET-pair plasmids using jetPRIME (Polyplus transfection, Illkrich-Graffen-
staden, France) following the manufacturer’s instructions. Eighteen hours
post transfection, cells were transferred to clear flat bottom 96-well plates
with 50 000 cells per well with complete Dulbecco’s modified Eagle’s
medium. After the cells have attached (usually 5–7 h), they were treated for
24 h with compounds. The compound stocks were typically prepared in
100% DMSO (Sigma, D2438) and stored at − 20 °C until use, unless
indicated otherwise. Prior to use, the compounds were brought to room
temperature and were diluted to the final concentration in the medium
with a final DMSO concentration of less than 0.1%. The ionophore
collection was screened at a final drug concentration of 1 μg/ml and the
Microbial Screening Technologies (MST) Library was screened at a final
concentration of 0.25 μg/ml in the growth medium. After treatment, cells
were detached with 75 μl of 10 mM EDTA in phosphate-buffered saline
and fixed using an equal volume of 4% paraformaldehyde (PFA; Sigma,
Cat. No. P6148) for 15 min at room temperature. The samples were stored

Cancer stem cell drugs target K-ras signaling
AK Najumudeen et al

5258

Oncogene (2016) 5248 – 5262 © 2016 Macmillan Publishers Limited, part of Springer Nature.



at 4 °C until analysis. The libraries were all screened in three independent
experiments and each 96-well plate was designed to have an internal
compactin control. The cross-validation screen with HEK cells was
performed as described above. Fixed cells were analyzed using the FACS
LSR II (BD Biosciences, San Jose, CA, USA) using a high throughput sampler
with the following filter settings for donor (405 nm excitation, 440/40 nm
emission), acceptor (488 nm excitation, 530/30 nm emission) and FRET
(405 nm excitation, 584/42 nm emission) filter. The acquired cytometry
data were analyzed using a custom written procedure in IgorPro5
(Wavemetrics, Portland, OR, USA).29,30 FITC beads (Bangs Laboratories,
Fishers, IN, USA, MESF, pH 7.2, Cat. No. 1187) with a size (7.56 μm) and
defined 1 401 242 FITC-equivalents were used for normalized acceptor
level calibration. The FITC-beads fluorescence intensity at 488 nm
excitation was correlated with mCitrine intensity of the FRET sample. The
monomeric Cyan Fluorescent Protein-mCitrine fusion protein was used to
calibrate the FRET efficiency and donor–acceptor ratio. The FRET Emax was
calculated as earlier described.29,30 The FRET Emax values were averaged
over the plate and a 15% change in the FRET Emax compared with plate
average was used as the primary criteria for hit selection.

Confocal and STED microscopy
MDCK cells stably expressing either mGFP-H-rasG12V or mGFP-K-rasG12V
and BHK cells transiently expressing either mGFP-H-rasG12V or mGFP-K-
rasG12V were treated for 24 h with 1.3 μM salinomycin, 1.3 μM nigericin and
1.7 μM lasalocid sodium, 10 nM STS or 0.2 μM avermectin, ivermectin,
conglobatin A, ophiobolin A, leptomycin B, kazusamycin B and streptoni-
grin. Cells were fixed 24 h after treatments with 4% PFA and mounted
with Mowiol 4–88 (Sigma–Aldrich). Cells were imaged using a Zeiss LSM
780 confocal microscope (Carl Zeiss AG, Jena, Germany) with a 488 nm
wavelength Argon laser (2% of nominal power 35 mW) used for EGFP
(excitation: 488 nm, detection: 493–575 nm). Bidirectional scanning and
8× line averaging was used on a 1024× 1024 resolution with zoom
adjusted according to the cell of interest. Images were treated using
ImageJ 1.49n (National Institutes of Health, Bethesda, MD, USA) to adjust
for contrast and to display them on an inverted gray-scale. For STED
microscopy of Cav-1-positive caveolar structures, cells were fixed in 4%
PFA and permabilized with 0.2% saponin and blocked with 0.2% bovine
serum albumin before incubation with anti-Cav-1 antibody (BD Bios-
ciences, Cat. No. 610060). Cells were then incubated with anti-rabbit
IgG-Star-635 (Abberior GmbH, Göttingen, Germany, Cat. No. 2-0012-002-7)
secondary antibody and mounted in mowiol 4–88 (Sigma–Aldrich). Images
were acquired on an inverted confocal laser-scanning microscope (Leica
SP5 STED, Leica Microsystems GmbH, Wetzlar, Germany). Excitation source
was a 635 nm pulsed laser (PicoQuant LDH-P-C- 640B, Berlin, Germany)
and fluorescence was collected with an avalanche photodiode (APD)
detector at 665–705 nm range. Depletion was carried out with a pulsed
Titanium:Sapphire laser MaiTai HP (Spectra-Physics, Santa Clara, CA, USA)
delivering femtosecond pulses at a rate of 80 MHz with an output power of
2.2 watts for the selected wavelength of 740 nm. Images were acquired
with a silicone oil immersion objective lens (Leica NA1.4 × 100) and the
confocal pinhole was set to one airy unit, with a scan speed of 700 Hz, and
line averaging of 8. Sampling was carried out on a 1024× 1024 format and
using a × 10 zoom allowing sufficient magnification to observe individual
caveolae while keeping the region of interest large enough for
quantification of a significant area of the cell membrane. Caveolae number
quantification was carried out with ImageJ 1.49n (National Institutes of
Health) using the built-in functions of threshold and analyze particles. For
particle detection, we set a size range of 0.005–0.3 μm2 that excludes free
molecules of Cav-1 and large agglomerates that do not correspond to
actual caveolae. Number of caveolae were quantified and divided by the
membrane area included in each image to obtain the density of caveolae.
For each condition, a minimum of 10 cells were imaged and quantified.

FRET-imaging using fluorescence lifetime microscopy (FLIM)
Cells were transfected using jetPRIME transfection reagent (Polyplus) with
the donor alone (mGFP-tagged constructs) in control samples, or mGFP-
tagged together with the acceptor. Acceptors were mCherry-tagged Ras
constructs in nanoclustering-FRET experiments (pmGFP:pmCherry plas-
mids at 1:3 ratio, 2 μg total plasmid), mRFP-RBD in C-Raf-RBD-recruitment
(1:3 plasmid ratio, 2 μg total plasmid) FRET experiments. Caveolae level
manipulations were performed by co-expressing untagged PTRF-Flag
and Cav-1-HA plasmids (1:3:1.5:1.5 plasmid ratio, 3.5 μg total plasmid).
For CaM level manipulation experiments, HEK cells were transfected with

pmGFP- and pmCherry-K-rasG12V with either pcDNA3.1-wild-type-CaM or
pcDNA3.1-mut-CaM (1:3:3 plasmid ratio, 3.5 μg total plasmid) together
with 60 nM of CaM siRNA (Qiagen, Germantown, MD, USA, Cat. No.
1027416) targeting the non-coding region of Calmodulin 1. Cells were
treated 24 h after transfection with either DMSO control, 1.3 μM
salinomycin, 1.3 μM nigericin, 1.7 μM lasalocid, 10 nM STS or 0.2 μM
avermectin, ivermectin, conglobatin A, ophiobolin A, leptomycin B,
kazusamycin B and streptonigrin. The final DMSO concentration in cells
was kept under 0.1%. Cells were fixed 24 h after treatments with 4% PFA
and mounted with Mowiol 4–88 (Sigma–Aldrich). The mGFP fluorescence
lifetime was measured using a fluorescence lifetime imaging attachment
(Lambert Instruments, Groningen, The Netherlands) on an inverted
microscope (Zeiss AXIO Observer D1). For the sample excitation,
sinusoidally modulated 3 W, 497 nm LED at 40 MHz under epi-
illumination was used. Cells were imaged using the × 63, NA1.4 oil
objective with the GFP filter set (excitation: BP 470/40, beam splitter: FT
495, emission: BP 525/50). The phase and modulation were determined
using the manufacturer’s software from images acquired at 12 phase
settings. Fluorescein at 0.01 mM, pH 9.0 was used as a lifetime reference
standard.67 For each treatment condition, the fluorescence lifetime was
measured typically for 460 cells from three biological repeats. From the
obtained fluorescence lifetimes, the apparent FRET efficiency was
calculated as described.17

Western blotting analysis
BHK21 cells were transfected with mGFP-K-rasG12V or mGFP-H-rasG12V
using jetPRIME transfection reagent. Twenty-four hours after transfection,
cells were serum-starved for 5 h and treated with either DMSO control,
1.3 μM salinomycin, 1.3 μM nigericin or 1.7 μM lasalocid for 24 h. For
Calmodulin siRNA experiments, MDA-MB-231 cells were transfected with
CaM siRNA (Qiagen, Cat. No. 1027416) using Lipofectamine 3000 (Thermo-
Fischer Scientific, Grand Island, NY, USA) according to the manufacturer's
instructions for 24 h. Following treatment or transfection, cells were
harvested in Laemmli buffer with 0.1% bromophenol blue and resolved on
a 10% gel and transferred to Protran nitrocellulose membrane (Perkin
Elmer, Waltham, MA, USA). Membranes were blocked with 5% milk in TBS
+0.1% Tween-20 and immunolabelled using primary antibodies against
phospho-p44/42 MAP kinase (Thr2202/Tyr204; Cell Signaling, Danvers, MA,
USA, Cat. No. 9101), p44/42 MAP kinase (Cell Signaling, Cat. No. 9102), GFP
(BioVision, Milpitas, CA, USA, Cat. No. 3999-100), Oct3/4 (Santa Cruz, Paso
Robles, CA, USA, sc-9081), Sox2 (Cat. No. C70B1, Cell Signaling), NANOG
(R&D systems, Wiesbaden, Germany, Cat. No. AF1997) and Calmodulin
(Cell Signaling, Cat. No. 4830). β-Actin (clone AC-15; Sigma–Aldrich, Cat. No.
A1978) was used as a loading control. Goat-anti-rabbit immunoglobulins/
HRP (Santa Cruz, Cat. No. sc-2004) and chicken-anti-mouse immunoglo-
bulins/HRP (Santa Cruz, Cat. No. sc-2954) were used as secondary
antibodies. The bands were detected with enhanced chemiluminescence
(Bio-Rad, Helsinki, Finland) and densitometrically analyzed with ImageLab
Software (Bio-Rad).

Cell proliferation and viability assays
For proliferation assays of HEK or BHK, cells were seeded in 96-well plates
and treated after 24 h with either DMSO control, 1.3 μM salinomycin, 1.3 μM
nigericin or 1.7 μM lasalocid for 3 days. DMSO control samples were
matched with the highest DMSO concentration of the inhibitors and
typically the final DMSO concentration in cell experiments was kept below
0.1%. Cell proliferation was measured as change in fluorescence intensity
every 24 h using alamarBlue (Invitrogen, Carlsbad, CA, USA, Cat. No.
DAL1100) following the manufacturer’s instructions. Fluorescence intensity
was measured at 570 nm excitation and 590 nm emission on a Synergy H1
Multi-Mode Reader (BioTek, Winooski, VT, USA). Each treatment condition
consisted of at least three replicate wells and was repeated three times.
The fluorescence intensities at each time point was compared with the
DMSO control and data were expressed as change in cell proliferation
relative to the control. For dose–response assays, cells were seeded in
96-well plates and treated with various concentrations of the inhibitors. For
each inhibitor concentration, three to six replicate wells were measured
and were repeated three times. After incubation, cell viability was
measured using alamarBlue. The fluorescence intensities of treated cells
were compared with the DMSO control and the data were expressed as
cell viability relative to the control. Drug sensitivity profiling of tumor cell
lines was performed through GenScript human tumor cell line profiling
services. Briefly, cancer cell lines were plated on 384-well plates and

Cancer stem cell drugs target K-ras signaling
AK Najumudeen et al

5259

© 2016 Macmillan Publishers Limited, part of Springer Nature. Oncogene (2016) 5248 – 5262



treated for 3 days with various concentrations of the inhibitors.
After incubation, viability was measured using CellTiter-Glo (Promega
BioSciences, San Luis Obispo, CA, USA) reagent following the manufac-
turer's instructions. Luminescence was measured on a PHERAstar Plus
microplate reader (BMG Labtech, Ortenberg, Germany). Data analysis was
performed using GraphPad Prism.

Flow cytometric analysis of CD44+/CD24− cells
MDA-MB-231 cells treated with inhibitors were stained with APC-conjugated
anti-CD44 (clone G44-26, BD Biosciences) antibody and PE-conjugated
anti-CD24 antibody (clone ML5, BD Biosciences) following the manufacturer’s
instructions. Briefly, treated cells were washed with phosphate-buffered
saline and harvested in 0.05% trypsin/0.025% EDTA. Detached cells were
washed with phosphate-buffered saline containing 2% fetal calf serum
and 0.1% sodium azide (FACS buffer 1) and resuspended in the FACS buffer 1
at 106 cells/100 μl. Fluorochrome-conjugated monoclonal antibodies were
added to the cell suspensions at concentrations recommended by the
manufacturer and incubated at 4 °C in the dark for 30–40 min. After staining,
cells were washed with phosphate-buffered saline containing 0.1% sodium
azide (FACS buffer 2), fixed using 4% PFA and cytometric analysis was
performed in a FACS LSR II (BD Biosciences) cytometer in accordance
with the manufacturer’s protocols. In brief, unstained cells, CD44, CD24
and double-stained control cells were used to mark the four quadrants in
a dot-plot for unstained, CD44+, CD24+ and double-positive populations. The
change in percentage of CD44+/CD24− cells (top left quadrant) was
measured in DMSO control and inhibitor treated samples.

Mammosphere assay
Mammosphere formation assays were performed using MDA-MB-231,
MDA-MB-436, Hs578T and MCF7 cells. The cells were cultured in 48-well
suspension culture plates (Cellstar, Greiner Bio-One, Frickenhausen,
Germany) at an initial density of 2000 cells per well in serum-free media
supplemented with 1× B27 (Gibco, Thermo Fisher Scientific), 25 ng/ml EGF
(Sigma) and 25 ng/ml FGF (Sigma). After 6 days in culture, cells were treated
for additional 3 days with the indicated inhibitors. For CaM RNAi
experiments, cells were first seeded in six-well plates and transfected with
either 60 nM scrambled siRNA or siRNA targeting Calmodulin 1 (Qiagen, Cat.
No. 1027416) and 24 h later, they were transferred to 48-well suspension
culture plates and grown as mentioned above. The mammospheres were
analyzed in an Evos FL microscope (Thermo Fisher Scientific) and spheres
with a minimum size of at least 50 μm were counted. The sphere formation
under different treatments was expressed as percentage normalized to the
vehicle treated control.

Statistical analysis
Unless otherwise stated, statistical differences were determined using an
analysis of variance (ANOVA) complemented by Tukey’s honest significant
difference test (Tukey’s HSD). The GraphPad PRISM software was used to
perform these analyses. Statistical significance levels are annotated as n.
s. = non significant, *Po0.05, **Po0.01, ***Po0.001, ****Po0.0001.

Dose–response analysis
The half maximal inhibitory concentrations (IC50) of the compounds
was calculated in GraphPad Prism using the nonlinear regression analysis
of log (inhibitor concentration) vs drug response (four parameter logistic
function) with the equation:

y ¼ aþ ðb - aÞ=ð1þ 10ððx - LogIC50ÞÞÞ
where y is the parameter quantifying the relative cell viability, x is the log
of inhibitor dose or concentration. The fitting parameters a and b
correspond to the lower and upper limits of the cell viability, respectively.
IC50 values of tumor cell lines used for drug sensitivity profiling were
acquired and analyzed by GenScript using the same equation as above.

Selection of co-expressed genes
Whole-genome gene expression data for ESCs and Fibroblast cells were
obtained from two meta-sets: GeneChip Human Genome U133 Plus 2.0
Array (408 samples) and Illumina (San Diego, CA, USA) Sentrix HumanRef-8
Expression BeadChip (245 samples) available in the ESTOOLs database
(http://estools.cs.tut.fi/index.php).39 Gene expression data were normalized
for batch effects using ComBat package available in R. Spearman

correlation analysis was performed to find additional set of genes
co-expressed with the initial set of 10 genes. Briefly, we first selected the
40 most correlated genes in expression pattern with each of the 10 genes
in ESCs and fibroblasts extracted from ESTOOLS database. This set of genes
was filtered to keep genes that were correlated with more than one gene
in the initial set, resulting in a total of 32 co-expressed genes. Unsupervised
hierarchical clustering was performed using the selected set of genes
representing K-ras-nanoclustering signature, with distance measure as
Pearson correlation and using the average linkage algorithm in R
version 3.1.2.

Identification of cancer cell lines with K-ras-nanoclustering
signature
Gene expression data for cancer cell lines was extracted from the Cancer
Cell Line Encyclopedia (CCLE) resource (http://www.broadinstitute.org/
ccle/home).41 On the basis of gene expression data of the 13 genes
representing the K-ras-nanoclustering signature, Spearman correlation
coefficients were calculated between the cancer cell lines and the ESCs
and fibroblasts. Rank product analysis was performed to find the most
consistently top-ranked (positively correlated) cancer cell lines for ESCs
and fibroblasts, separately. Top 30 most correlated cancer cell lines for the
two groups were considered further, and 15 cancer cell lines (9 ESC-like
and 6 fibroblast-like) were selected for drug testing.

Identification of clinical samples with K-ras-nanoclustering
signature
Whole-genome gene expression and clinical data for patients was
obtained from The Cancer Genome Atlas project using TCGA
Assembler.68 For selecting samples exhibiting the ESC-like K-ras-nanoclus-
tering signature pattern, the patient’s expression signature was correlated
(Spearman correlation) with 20 randomly chosen primed ESC cell lines
from the ESTOOLs database and averaged. A total of 605 patients had
average correlation⩾ 0.6 with ESC-like-K-ras-nanoclustering signature
pattern (8% of the TCGA samples). Similar correlation analysis was
performed for the fibroblast-like-K-ras-nanoclustering signature pattern,
resulting in 402 subjects with average correlation⩾ 0.6 with Fibroblast-
like-K-ras-nanoclustering signature pattern. Kaplan–Meier analysis and
Univariate Cox proportional hazard test was performed using R-package
survival to assess the difference in overall survival between the two groups
of TCGA samples: ESC-like and Fibroblast-like. Similarly, we also compared
subjects that exhibited expression pattern similar to those observed in the
ESC-like-cancer cell lines and fibroblast-like-cancer cell lines among the 15
cell lines screened. Subjects that had average Spearman correlation⩾ 0.6
with the ESC-like-cancer cell lines (n= 1401) were compared with subjects
that had average spearman correlation⩾ 0.6 with the fibroblast-like cancer
cell lines (n=2631).
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