316 research outputs found

    Mapping QTL associated with resistance to avian oncogenic Marek’s Disease Virus (MDV) reveals major candidate genes and variants

    Get PDF
    Marek's disease (MD) represents a significant global economic and animal welfare issue. Marek's disease virus (MDV) is a highly contagious oncogenic and highly immune-suppressive α-herpes virus, which infects chickens, causing neurological effects and tumour formation. Though partially controlled by vaccination, MD continues to have a profound impact on animal health and on the poultry industry. Genetic selection provides an alternative and complementary method to vaccination. However, even after years of study, the genetic mechanisms underlying resistance to MDV remain poorly understood. The Major Histocompatability Complex (MHC) is known to play a role in disease resistance, along with a handful of other non-MHC genes. In this study, one of the largest to date, we used a multi-facetted approach to identify QTL regions (QTLR) influencing resistance to MDV, including an F population from a full-sib advanced intercross line (FSIL) between two elite commercial layer lines differing in resistance to MDV, RNA-seq information from virus challenged chicks, and genome wide association study (GWAS) from multiple commercial lines. Candidate genomic elements residing in the QTLR were further tested for association with offspring mortality in the face of MDV challenge in eight pure lines of elite egg-layer birds. Thirty-eight QTLR were found on 19 chicken chromosomes. Candidate genes, miRNAs, lncRNAs and potentially functional mutations were identified in these regions. Association tests were carried out in 26 of the QTLR, using eight pure lines of elite egg-layer birds. Numerous candidate genomic elements were strongly associated with MD resistance. Genomic regions significantly associated with resistance to MDV were mapped and candidate genes identified. Various QTLR elements were shown to have a strong genetic association with resistance. These results provide a large number of significant targets for mitigating the effects of MDV infection on both poultry health and the economy, whether by means of selective breeding, improved vaccine design, or gene-editing technologies

    Microsatellite Markers Associated with Resistance to Marek’s Disease in Commercial Layer Chickens

    Get PDF
    The objective of the current study was to identify QTL conferring resistance to Marek\u27s disease (MD) in commercial layer chickens. To generate the resource population, 2 partially inbred lines that differed in MD-caused mortality were intermated to produce 5 backcross families. Vaccinated chicks were challenged with very virulent plus (vv+) MD virus strain 648A at 6 d and monitored for MD symptoms. A recent field isolate of the MD virus was used because the lines were resistant to commonly used older laboratory strains. Selective genotyping was employed using 81 microsatellites selected based on prior results with selective DNA pooling. Linear regression and Cox proportional hazard models were used to detect associations between marker genotypes and survival. Significance thresholds were validated by simulation. Seven and 6 markers were significant based on proportion of false positive and false discovery rate thresholds less than 0.2, respectively. Seventeen markers were associated with MD survival considering a comparison-wise error rate of 0.10, which is about twice the number expected by chance, indicating that at least some of the associations represent true effects. Thus, the present study shows that loci affecting MD resistance can be mapped in commercial layer lines. More comprehensive studies are under way to confirm and extend these results

    m6A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination

    Get PDF
    N6-methyladenosine (m6A) is the most common internal modification of eukaryotic messenger RNA (mRNA) and is decoded by YTH domain proteins1, 2, 3, 4, 5, 6, 7. The mammalian mRNA m6A methylosome is a complex of nuclear proteins that includes METTL3 (methyltransferase-like 3), METTL14, WTAP (Wilms tumour 1-associated protein) and KIAA1429. Drosophila has corresponding homologues named Ime4 and KAR4 (Inducer of meiosis 4 and Karyogamy protein 4), and Female-lethal (2)d (Fl(2)d) and Virilizer (Vir)8, 9, 10, 11, 12. In Drosophila, fl(2)d and vir are required for sex-dependent regulation of alternative splicing of the sex determination factor Sex lethal (Sxl)13. However, the functions of m6A in introns in the regulation of alternative splicing remain uncertain3. Here we show that m6A is absent in the mRNA of Drosophila lacking Ime4. In contrast to mouse and plant knockout models5, 7, 14, Drosophila Ime4-null mutants remain viable, though flightless, and show a sex bias towards maleness. This is because m6A is required for female-specific alternative splicing of Sxl, which determines female physiognomy, but also translationally represses male-specific lethal 2 (msl-2) to prevent dosage compensation in females. We further show that the m6A reader protein YT521-B decodes m6A in the sex-specifically spliced intron of Sxl, as its absence phenocopies Ime4 mutants. Loss of m6A also affects alternative splicing of additional genes, predominantly in the 5′ untranslated region, and has global effects on the expression of metabolic genes. The requirement of m6A and its reader YT521-B for female-specific Sxl alternative splicing reveals that this hitherto enigmatic mRNA modification constitutes an ancient and specific mechanism to adjust levels of gene expression

    Memory consolidation in honey bees is enhanced by down-regulation of Down syndrome cell adhesion molecule and changes its alternative splicing

    Get PDF
    Down syndrome cell adhesion molecule (Dscam) gene encodes a cell adhesion molecule required for neuronal wiring. A remarkable feature of arthropod Dscam is massive alternative splicing generating thousands of different isoforms from three variable clusters of alternative exons. Dscam expression and diversity arising from alternative splicing have been studied during development, but whether they exert functions in adult brains has not been determined. Here, using honey bees, we find that Dscam expression is critically linked to memory retention as reducing expression by RNAi enhances memory after reward learning in adult worker honey bees. Moreover, alternative splicing of Dscam is altered in all three variable clusters after learning. Since identical Dscam isoforms engage in homophilic interactions, these results suggest a mechanism to alter inclusion of variable exons during memory consolidation to modify neuronal connections for memory retention

    Thiamethoxam exposure deregulates short ORF gene expression in the honey bee and compromises immune response to bacteria

    Get PDF
    © 2021, The Author(s). Maximizing crop yields relies on the use of agrochemicals to control insect pests. One of the most widely used classes of insecticides are neonicotinoids that interfere with signalling of the neurotransmitter acetylcholine, but these can also disrupt crop-pollination services provided by bees. Here, we analysed whether chronic low dose long-term exposure to the neonicotinoid thiamethoxam alters gene expression and alternative splicing in brains of Africanized honey bees, Apis mellifera, as adaptation to altered neuronal signalling. We find differentially regulated genes that show concentration-dependent responses to thiamethoxam, but no changes in alternative splicing. Most differentially expressed genes have no annotated function but encode short Open Reading Frames, a characteristic feature of anti-microbial peptides. As this suggested that immune responses may be compromised by thiamethoxam exposure, we tested the impact of thiamethoxam on bee immunity by injecting bacteria. We show that intrinsically sub-lethal thiamethoxam exposure makes bees more vulnerable to normally non-pathogenic bacteria. Our findings imply a synergistic mechanism for the observed bee population declines that concern agriculturists, conservation ecologists and the public
    corecore