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Abstract: Marek’s disease (MD) represents a significant global economic and animal welfare issue.
Marek’s disease virus (MDV) is a highly contagious oncogenic and highly immune-suppressive
α-herpes virus, which infects chickens, causing neurological effects and tumour formation.
Though partially controlled by vaccination, MD continues to have a profound impact on animal health
and on the poultry industry. Genetic selection provides an alternative and complementary method
to vaccination. However, even after years of study, the genetic mechanisms underlying resistance
to MDV remain poorly understood. The Major Histocompatability Complex (MHC) is known to
play a role in disease resistance, along with a handful of other non-MHC genes. In this study, one of
the largest to date, we used a multi-facetted approach to identify QTL regions (QTLR) influencing
resistance to MDV, including an F6 population from a full-sib advanced intercross line (FSIL) between
two elite commercial layer lines differing in resistance to MDV, RNA-seq information from virus
challenged chicks, and genome wide association study (GWAS) from multiple commercial lines.
Candidate genomic elements residing in the QTLR were further tested for association with offspring
mortality in the face of MDV challenge in eight pure lines of elite egg-layer birds. Thirty-eight
QTLR were found on 19 chicken chromosomes. Candidate genes, miRNAs, lncRNAs and potentially
functional mutations were identified in these regions. Association tests were carried out in 26 of the
QTLR, using eight pure lines of elite egg-layer birds. Numerous candidate genomic elements were
strongly associated with MD resistance. Genomic regions significantly associated with resistance to
MDV were mapped and candidate genes identified. Various QTLR elements were shown to have a
strong genetic association with resistance. These results provide a large number of significant targets
for mitigating the effects of MDV infection on both poultry health and the economy, whether by
means of selective breeding, improved vaccine design, or gene-editing technologies.

Keywords: Marek’s disease virus; QTL; GWAS; transcriptomics; FSIL; disease resistance; candidate gene

1. Introduction

Marek’s disease (MD) represents a significant global economic and animal welfare issue.
This immunosuppressive disease is responsible for an estimated 2 billion USD annual economic
loss to the global poultry industry [1], through bird mortality, lost egg production, and vaccination

Genes 2020, 11, 1019; doi:10.3390/genes11091019 www.mdpi.com/journal/genes

http://www.mdpi.com/journal/genes
http://www.mdpi.com
https://orcid.org/0000-0002-2813-7872
https://orcid.org/0000-0003-2624-6765
https://orcid.org/0000-0002-9991-1028
http://dx.doi.org/10.3390/genes11091019
http://www.mdpi.com/journal/genes
https://www.mdpi.com/2073-4425/11/9/1019?type=check_update&version=2


Genes 2020, 11, 1019 2 of 21

costs. The virus responsible, Marek’s disease virus (MDV), is an α-herpes virus that initially infects
B-cells, experiences a latency period, and can then proceed to develop as an oncogenic disease after
the infection of T-cells [2]. Furthermore, if birds do not succumb to MDV itself, they are often left
severely compromised with secondary infections such as Escherichia. coli (E. coli) [3]. The commercially
utilized vaccines are not sterilizing vaccines. They prevent the formation of tumours, but do not
prevent infection by MDV or shedding of the pathogenic virus [4]. Both vaccine and pathogenic MDVs
are found in vaccinated flocks, resulting in the emergence of increasingly more virulent strains [5].
As more virulent strains emerge, vaccine treatments are becoming less and less effective [6].

In the race to keep ahead of this viral evolution, genetic selection is a possible tool to aid in
breeding for viral resistance. Indeed, genetic selection following multiple generations of progeny
challenge has been shown to improve survival in commercial chicken populations [7]. Selection in
the poultry industry works relatively well, but knowing the causative elements for resistance would
provide a route for much more precise selection. However, the underlying genetic changes, and the
genes and specific variants impacting this genetic resistance are still largely unknown. For decades,
researchers have sought to identify the genes responsible for MDV resistance, with limited success.
It has become clear that many QTL/genes are involved in the resistance phenotype, with resistance not
being a simple trait with one or a few major genes but a classic quantitative trait with many genes of
small effect, thus making it difficult to identify causal variants [8].

MD is also of interest from a clinical perspective, as it can serve as a model for human
lymphoma. MDV-induced lymphomas are found to over-express the Hodgkin’s disease antigen
CD30, with expression correlating with the viral Meq oncogene [9]. Indeed, after infection, the chicken
CD30 promoter has also been shown to be hypo-methylated [10]. Identifying the genetic mechanisms
underlying MDV resistance is therefore not only of great importance to the poultry industry but will
also have implications for increasing our understanding of human cancers.

Different Major Histocompatability Complex (MHC) haplotypes are known to confer different
susceptibilities to the virus [11–13]. Studies have also reported the influence of non-MHC regions on
resistance to MDV [14]. Several studies have implicated specific genes in MDV resistance/susceptibility.
These include GH1 [15], SCYC1 [16], SCA2 [17], IRG1 [18], CD79B [19], SMOC1, and PTPN3 [20].
These studies are usually done, not with relevant commercial lines, but with experimental or inbred
lines and examine whole tissues, although recent work has investigated the host response to MDV in
specific cells such as macrophages, which are an early target for the virus [21,22]. Recent studies on the
role of lncRNAs [23,24] and miRNAs (in both the host and virus) have also been carried out [25–27],
including a study of serum exosomes from lymphoma-bearing birds [28]. In addition, the role of
epigenetics in resistance to MDV has been studied, with regions of differential methylation between
susceptible and resistant lines of birds highlighted [29,30].

Here, the availability of large-scale, phenotyped commercial populations, genome wide analysis
technologies and an F6 advanced intercross line [31], has given us the opportunity to carry out,
for the first time, a high-resolution analysis of genes underlying MDV resistance in commercially
relevant populations. We use multiple genetic resources at our disposal, including the F6 population
of an advanced full-sib inter-cross line (FSIL) previously analysed in a low-resolution study for MD
resistance using microsatellite markers to identify genomic regions associated with survival following
MD challenge [31]. Genomic DNA of the original 10 founder individuals and the subsequently
produced F6 was available for fine mapping through genome sequencing, and/or genotyping using a
genome-wide 600K SNP chip [32]. Furthermore, an extensive multi-generation (15) and multi-line (8)
collection of DNAs from progeny-challenged males was available to further examine candidate genes
and related variants associated with survival in the face of MDV infection.

In this report, we reveal for the first time MD as a true complex trait, controlled by many QTL.
Integration of multiple lines of evidence (F6, multi-generation/multi-line collection, host gene expression
responses to viral infection, genome annotations, etc.) on a large scale enabled a high-resolution
analysis that predicted mutations within genes, miRNAs, and lncRNAs highly associated with MDV
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response in commercial egg production lines. This analysis not only provides new markers for MD
resistance but also reveals more about the biology behind the mechanism of MDV susceptibility,
information that should lead to more precise selection strategies in the future.

2. Materials and Methods

2.1. Experimental Animals

All procedures carried out on the birds involved in this study were conducted in compliance with
Hy-Line International Institutional Animal Care and Use Committee guidelines.

2.1.1. Full Sib Advanced Inter-Cross Line (FSIL)

F6 birds from the FSIL were used to map QTL affecting MD resistance. The development of the
FSIL F6 challenge population has been previously described [31,33,34]. It was initiated from a cross of
two partially inbred commercially utilized elite White Leghorn lines, known to differ in their resistance
to MDV. Five independent FSIL families were developed and expanded over five generations. In all
five families, the male parent was from the less resistant line and the female parent was from the more
resistant line.

At the F6 generation, 1615 chicks were challenged with vv+ MDV strain 686 following the protocol
of Fulton et al. [7]. The experiment was carried out in two hatches. It was terminated at 152 days of
age in the first hatch, and after 145 days of age in the second. Resistance was measured as survival
time (age at death). For birds that survived to the end of the experiment, survival time was taken as
age at end of the experiment. To standardize the two hatches, survival for all birds that survived to
end of experiment was set to 149 days. This measure of resistance was used in all association tests.

This population was segregating for two MHC haplotypes (B2 and B15). Given the known
strong association of MHC-type with MD resistance, all analyses were done within MHC-type within
each family.

2.1.2. Pure line Pedigreed Sire Populations with Daughter Progeny Records for MDV Mortality

As part of the routine selection process within the Hy-Line (HL) breeding program, individual
males were mated to multiple females to produce 30 half-sib female progeny per sire. The dams were
MD vaccinated following normal industry practices. Progeny were vaccinated at 1 day of age with
HVT/SB1 and at 7 days of age inoculated subcutaneously with 500 PFU of vv+ MDV (provided by
Avian Disease and Oncology Lab, East Lansing MI). Mortality was recorded from 3 to 17 weeks of age
(termination of experiment), as described in Fulton et al. [7]. The sire MD tolerance phenotype is the
proportion of survivors among the daughters upon MD challenge..

Data were available from 15 generations of 8 elite lines (not the same generations in all lines),
with 1081 to 1393 males per line having MD progeny mortality data, for a total of 9391 males. The lines
included three different egg production breeds, namely five White Leghorn lines, two White Plymouth
Rock lines and one Rhode Island Red line. The sires and their progeny from these 8 pure lines (all with
pedigree data) were used to test functional genomic elements (genes, miRNAs, lncRNAs in the mapped
QTL regions (QTLR)), for association with MD progeny mortality. Also tested were a group of singleton
coding SNPs predicted to have deleterious effects on protein structure and function (henceforth called
potentially functional mutations, see below for details).

2.2. Genomic Sequencing of Founder Birds of the FSIL

Genome sequence information was produced for the 10 F0 founder individuals of the F6 population.
This was used to identify variants that differed in the genomes of the parental birds and may have
functional impact. Sequencing the DNA from the 10 F0 founder birds was carried out by the
Edinburgh Genomics sequencing facility (Edinburgh, UK). Samples were prepared for sequencing
using 1 ug of genomic DNA following the TruSeq PCR free kit protocol (FC-121-3001, Illumina,



Genes 2020, 11, 1019 4 of 21

Little Chesterford, UK). Resulting libraries were quality checked on an Agilent DNA 1000 bioanalyzer
(Agilent Technologies, South Queensferry, UK) and then clustered onto HiSeq Rapid V2 flow cell at a
concentration of 15 pM. Sequencing was carried out on an Illumina Hiseq 2500 using the HiSeq Rapid v2
SBS reagents (Illumina, Little Chesterford, UK), for 150 cycle paired end reads. Each of the 10 samples
was sequenced to around 15× coverage. Quality of sequences was determined using FastQC [35],
and mapping to the chicken reference genome (Galgal4) was carried out using BWA (v0.7.0) [36].
The resulting bam file was sorted with Samtools (v0.1.18) [37]. Picard tools (v1.95) was then used to
add read groups and mark duplicates (http://broadinstitute.github.io/picard/). The mpileup program
within Samtools carried out SNP calling (with options: -q20 -Q20 -AB -ugf) and these variants were
then filtered using the bcftools package within Samtools (v0.1.18).

2.3. Annotation of Genome Variants

Variants distinguishing the genomes of the F6 parental birds were classified as exonic—
synonymous or non-synonymous, intronic, 5′-upstream, 3′-downstream or intergenic, as determined
by the SNPEff program (v3.6c) [38]. Non-synonymous coding variants were further designated as
predicted to be highly deleterious to protein function (henceforth, “potentially functional mutations”),
moderately deleterious or having a low likelihood of being deleterious to protein function. In all,
a total of 5,718,725–6,154,628 variants (in all 5 males v all 5 females) were annotated within each sample.
Some of the identified variants were used to test the QTLR, as described below.

2.4. 600 K High Density SNP Genotyping of F6 Birds

F6 birds were genotyped genome-wide with the high density 600k Affymetrix SNP array [32] for
GWAS. DNA was available from 1615 MDV challenged birds. After quality control (QC), 1192 F6 birds
provided high quality genotypes (178, 234, 357, 221, and 202 birds from Families 1–5, respectively).
Genotyping was performed using 200 ng of gDNA with the standard protocol for the Axiom Affymetrix
platform (Thermo Fisher Scientific, Inchinnan, UK). Samples were amplified using the Axiom 2.0
Reagent Kit (#901758, Thermo Fisher Scientific), and the resultant product checked for both quantity and
quality of fragmentation. QC was performed using absorbance assay for quantity and running a sample
on a 4% agarose E-Gel (#G800804, Thermo Fisher Scientific) to check for fragmentation. The samples
were then hybridised to the Axiom Chicken Genotyping array (#902148, Thermo Fisher Scientific).
Hybridisation, wash, stain and scanning were carried out within the GeneTitan MC Instrument.
The resulting. CEL files were loaded into Axiom Analysis Suite (v2.0) for first stage analysis.

2.5. GWAS of the F6 Population to Identify MD Resistance QTL

The F6 genotypes were used to map QTL that impacted survival following MDV challenge.
After applying Affymetrix standard QC the remaining markers were further filtered to remove markers
with minor allele frequency ≤ 0.01 and markers with significant deviation from Hardy–Weinberg
Equilibrium (p≤ 0.001). An independent GWAS was then carried out within each of the 5 families of this
study, using JMP Genomics SNP-Trait association Trend test (JMP Genomics, Version 9, SAS Institute
Inc., Cary, NC, USA, 1989–2019). Survival to the end of the experiment was taken as the Censor
Variable; age at death was taken as a survival trait and MHC as a class variable and fixed effect.
To obtain experimental significance thresholds, the proportion of false positives (PFP) [39,40] was used
to correct for multiple tests.

2.6. Identification of QTL and Their Confidence Intervals

Although many marker x family combinations were nominally significant to highly significant
(comparison wise p ≤ 0.05 to p ≤ 0.001), very few remained significant after PFP corrections for multiple
tests. Nevertheless, visual inspection of the chromosomal Manhattan plots by families showed distinct
clusters of markers with high −LogP values intermixed with markers with low −LogP values (Figure 1).
Therefore, following Lipkin et al. [41], we identified QTL by using a moving average of −LogP (mAvg)

http://broadinstitute.github.io/picard/
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to smooth the Manhattan plots. We used a window size of ~0.1 Mb (27 markers) with a step size of
1 marker and a critical threshold mAvg of −LogP = 2.0 (p = 0.01) to declare significance, and Log drop
1 [42] to define QTLR boundaries.

Many QTLR had overlapping boundaries across two or more families, thus providing replication
and increased assurance of significance. Conservatively assuming such overlaps represents the same
underlying genetic element, we combined these QTLR within and across families, taking the start and
end log-drop boundaries of the QTLR as the first upstream and last downstream marker across all
families in the QTLR. Table 1 shows final list of 38 QTLR after consolidation within and across families.
Also shown are the number of genes (Ensembl database v79) and non-coding RNAs [43] found in
each QTLR.
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Figure 1. Manhattan plot of a significant F6 QTLR (Family 3: QTLR 1, Chromosome 1). LogP, −log10P of
a single marker; mAvg, moving average of −LogP values of a window of 27 markers; QTLR boundaries,
boundaries of the QTL region obtained by Log Drop 1 (see Section 2.6).

Table 1. Mapped QTLRs.

QTLR Chr Start End Length Genes lncRNAs

1 1 8,854,589 9,261,317 406,729 0 1
2 1 13,268,810 14,294,877 1,026,068 12 34
3 1 52,012,381 52,517,953 505,573 2 4
4 1 71,738,977 73,085,956 1,346,980 16 28
5 1 75,288,912 77,765,499 2,476,588 86 79
6 1 91,482,501 91,803,475 320,975 10 9
7 1 101,761,945 104,477,713 2,715,769 31 37
8 1 109,395,871 110,913,451 1,517,581 20 32
9 1 169,656,958 172,228,091 2,571,134 32 44

10 1 174,394,951 175,634,386 1,239,436 23 33
11 1 194,193,118 194,788,548 595,431 18 23
12 2 15,960 883,257 867,298 45 20
13 2 46,423,161 46,868,789 445,629 11 12
14 2 105,493,833 108,988,920 3,495,088 34 47
15 2 125,168,753 127,089,304 1,920,552 25 34
16 2 138,767,830 139,701,774 933,945 4 7
17 3 108,220,206 109,260,649 1,040,444 13 9
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Table 1. Cont.

QTLR Chr Start End Length Genes lncRNAs

18 4 8,308,498 11,268,107 2,959,610 54 99
19 4 84,393,173 88,579,400 4,186,228 68 73
20 5 7,568,851 8,147,837 578,987 4 3
21 5 18,806,924 19,673,354 866,431 4 3
22 6 2,077,640 2,709,412 631,773 19 13
23 6 29,536,109 29,817,337 281,229 10 16
24 6 31,006,769 31,448,342 441,574 7 6
25 7 13,062,871 16,436,053 3,373,183 55 82
26 10 22,643 1,713,384 1,690,742 63 28
27 11 7,397,790 8,440,259 1,042,470 9 28
28 12 8,996,686 9,432,693 436,008 15 16
29 13 10,363,430 12,176,727 1,813,298 27 40
30 14 8,085,563 9,335,685 1,250,123 38 50
31 14 13,138,194 15,087,518 1,949,325 82 41
32 16 1630 490,907 489,278 47 14
33 17 3,442,598 5,634,042 2,191,445 64 84
34 18 3,196,488 4,093,129 896,642 22 32
35 24 4,489,675 5,514,833 1,025,159 42 32
36 26 4,378,168 5,036,699 658,532 22 17
37 27 1,540,112 2,270,461 730,350 23 11
38 28 1,282,726 1,571,011 288,286 15 12

QTLR—ordinal number of the QTLR after consolidation within and across families (see Section 2.6);
Chr—chromosome; Start/End—Galgal4 QTLR coordinates of the first and last SNP in the QTLR; Length—Size of
the QTLR (bp); Genes and lncRNA—number of genes (Ensembl database v79) and non-coding RNAs [43] found in
the QTLR.

2.7. RNA-Seq Analysis

2.7.1. MDV Challenge Experiment

An experiment measuring host response to MDV viral strain 686 challenge (based on gene
expression measured by a whole genome RNA-seq assay) was carried out with 10 male and 10 female
birds from HL W36 commercial production hybrids. The parental lines used to produce the W36
commercial hybrid are closely related to the lines used to develop the F6 experimental cross. Previously
it was reported that males are more resistant to MD than females [44–46]. On this basis, we compared
differentially expressed genes (DEGs) of males and females as surrogate for comparison of chicks
from more- and less-resistant lines. Hence, gender balanced groups were used for the RNA-seq
challenge experiment, with 5 males + 5 females in each of the challenged and control groups.
This allowed us to identify viral response genes in each sex. Thus, this experiment included 4
comparisons: Females—challenged v control; Males—challenged v control; Controls—males v females;
Challenged—males v females. Although some of the DEGs in the cross-sex comparisons will be due to
sex rather than response to MDV, others can be expected to reveal some of the genes behind the host
immune responses and potential differential susceptibility.

To reflect infection in the field, ten 6-day old HL W36 commercial birds (5 males + 5 females) were
infected with 500 pfu of the very virulent plus (vv+) MDV strain 686, by subcutaneous injection in
the neck (virus kindly provided by the USDA/Avian Disease and Oncology Lab, East Lansing, MI,
USA). All birds were vaccinated at 1 day of age with HVT/SB1 vaccine. Spleen tissues from these
10 challenged and from 10 unchallenged control birds were harvested at 4 dpi, flash frozen in liquid
nitrogen and stored at −80 ◦C for subsequent RNA preparation and RNA-Seq analysis. All birds were
housed together, with challenged and control chicks separated by 2.44 m.
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2.7.2. RNA Preparation

RNA was prepared from the 4-dpi flash-frozen spleen tissues of each of the above 20 chicks
after homogenization in Qiazol reagent (Qiagen, Manchester, UK), and subsequent preparation using
RNeasy RNA isolation kit (Qiagen, Manchester, UK) as per the manufacturer’s guidelines. RNA was
resuspended in dH2O.

2.7.3. Transcriptomic Sequencing and Analysis

Strand-specific 100 bp paired-end RNA-Seq was carried out by GATC (Konstanz, Germany)
using an Illumina HiSeq2500 genome sequencer. 19,510,400–26,596,800 reads representing at least 15×
coverage were produced for each sample. Sequencing quality was assessed by means of FastQC [35]
and reads mapped to the reference genome (Galgal4) with Tophat2 (v2.0.14) [47] using the Bowtie2
aligner (v2.2.3) [48]. Untrimmed reads with stated insert sizes were mapped using the Ensembl 79
genome annotation. 78.1% of reads mapped to the Galgal4 reference genome. The Cuffdiff package
within Cufflinks (v2.2.1) was used to quantify transcripts and determine differential expression between
experimental groups [49].

2.8. QTLR Tests

2.8.1. Selection of Candidate Genomic Elements Underlying the 38 QTLR for Further Testing and
Validation in the 8 HL Elite Pure Lines

In principal, a random selection of markers from a QTLR region could be used for testing in the 8
elite-sire validation populations. However, we decided to take a step forward, and search the QTLR
for attractive candidate elements that could tested in the validation populations. The assumption
being that for a marker to show association across a number of populations, it must be in high LD with
the causative mutation in all of these populations. For this to hold, the marker must be very close to
the causative mutation, which is what we would expect for markers taken from the quantitative trait
element itself.

2.8.2. Identification of Candidate Genes within QTLR

The BioMart data mining tool within the Ensembl database (release 79) was used to identify genes
lying under the 38 QTLR identified from the F6 data (Table 1). This information was then compared
with the gene expression data (from RNA-Seq analysis of the MDV challenge experiment) in order to
identify potential candidate genes for MD resistance. The DAVID analysis tool (v6.8) (https://david.
ncifcrf.gov/home.jsp) identified gene ontology (GO) terms associated with DEGs under each QTLR.
Following this, Ingenuity Pathway Analysis software (IPA v2.3) (https://www.qiagenbioinformatics.
com/products/ingenuity-pathway-analysis/) revealed which canonical pathways were perturbed by
MDV infection in the host, and allowed us to analyze the gene interaction networks involved in the
host response. Likely upstream regulators of differentially regulated genes were identified and DEGs
in male and female birds were compared.

2.8.3. Selection of Genetic Markers within QTLR for Genotyping

Markers located in genomic elements underlying each QTLR (genes, miRNAs, lncRNAs,
and potentially functional mutations) were identified from genome sequences aligned to the reference
chicken genome for each of the 8 elite lines utilized in this study. SNPs predicted to alter amino acids
were preferentially chosen, but variants were also selected to encompass the entire gene where possible.
All SNPs selected were validated using 200 samples from cohorts separated by 13–15 generations
from each line to confirm that the marker was polymorphic (i.e., identified both homozygote and
heterozygote individuals), and to define the minimum number of markers required to define a
haplotype within each genomic element (gene, miRNA, or lncRNA) in each line. This minimum
number of SNPs was then used to identify the haplotype status of each individual bird. The elite

https://david.ncifcrf.gov/home.jsp
https://david.ncifcrf.gov/home.jsp
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/
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lines were selected for MD resistance, but the selection was at a low level, as selection emphasis
was for production-related traits including egg numbers, shell quality and feed efficiency. If SNPs
were homozygous in both generations, then the SNP composition was assumed monomorphic for the
intervening and subsequent generations.

2.8.4. Selection of Candidate Coding Genes

Twenty candidate coding genes (Table 2) were selected for further study in the 8 elite sire
lines based on (i) position under a QTLR defined by this or previous genetic studies, (ii) known
biology of the gene (e.g., involvement in innate immunity, cell death, or cancer), (iii) polymorphisms
(presence of variants), (iv) differential expression between challenged and control, or more and less
resistant birds—either in this or previous studies (e.g., Smith et al. 2011 [18]), and (v) allele specific
expression [50]. Specific details for the detection assays are provided in Supplementary Table S1.

Table 2. Candidate genes in the QTLRs, by location (Galgal4).

QTLR Gene Description Chr Start End Length

5 CSTA Cystatin A (Stefin A) 1 76,253,583 76,258,549 4967
5 LAG3 Lymphocyte-activation gene 3 1 76,676,057 76,678,087 2031
5 C1S Complement C1s subcomponent 1 76,859,359 76,868,459 9101
7 ADAMTS5 ADAM metallopeptidase with thrombospondin type 1 motif, 5 1 102,403,453 102,442,746 39,294
8 SUPT20H Spt20 homolog, saga complex component 1 171,574,831 171,612,194 37,364

10 FLT3 Fms related tyrosine kinase 3 1 175,281,894 175,309,466 27,573
11 RELT RELT tumor necrosis factor receptor 1 194,551,973 194,555,607 3635
13 TRANK1 Tetratricopeptide repeat and ankyrin repeat containing 1 2 46,537,531 46,576,714 39,184
19 CTNNA2 Gallus gallus catenin (cadherin-associated protein), α 2 4 86,948,459 87,057,215 108,757
29 HAVCR1 Hepatitis A virus cellular receptor 1 precursor 13 10,778,915 10,785,137 6223
29 TIMD4 T-cell immunoglobulin and mucin domain-containing protein 4 13 10,789,088 10,803,683 14,596
30 SOCS1 Suppressor of cytokine signaling 1 14 8,935,374 8,936,082 709
32 TAP1 Antigen peptide transporter 1 16 67,623 76,124 8502
32 IL4I1 Interleukin 4 induced 1 16 191,143 194,187 3045
33 TLR4 Toll-like receptor 4 precursor 17 3,566,454 3,571,907 5454
33 BRINP1 Bmp/retinoic acid inducible neural specific 1 17 3,985,882 4,064,290 78,409
33 CD7 T-cell antigen CD7 18 3,681,786 3,686,083 4298
35 TAGLN Transgelin 24 5,229,236 5,232,028 2793
36 TREML2 Triggering receptor expressed on myeloid cells isoform 1 26 4,693,285 4,699,278 5994
37 CD79B CD79b molecule 27 1,622,587 1,627,022 4436

QTLR—ordinal number of the QTLR (Table 1); Chr—chromosome; Start/End—Galgal4 gene coordinates (bp);
Length—size of the gene (bp).

2.8.5. Selection of Candidate Non-Coding RNAs

With many causal variants for quantitative traits known to reside within regulatory elements [51],
we deemed it important to examine non-coding transcripts as well. In contrast to the candidate genes,
these were selected more or less on the basis of position underlying QTLR alone, with no information
on potential biological function.

Micro RNAs (miRNAs): A total of 46 miRNAs were found underlying the QTLR. Sequence
information was used to identify markers segregating in HL lines. For some miRNAs, polymorphisms
were not found, while for others multiple polymorphic sites were observed. Since most of the miRNAs
are very short, haplotype information could be derived only for some of them. Ultimately, 17 miRNAs
were chosen for further association analysis (Table 3). Detection assays for 30 SNPs lying within these
17 transcripts were developed (Supplementary Table S1).

Long non-coding RNAs (lncRNAs): With a view to testing some lncRNAs potentially associated
with MDV resistance, five small QTLR were chosen which harboured only a few (1–6) lncRNAs.
From these RNAs, up to 5 lncRNAs per QTLR were tested for association with MD. Thus, there was
a relatively high likelihood that one of these would be the genomic element housing the causative
mutation. From among these, a further 17 transcripts were chosen for further association analysis
(Table 4). Two lncRNAs overlapped (labelled with negative distance). Detection assays for 80 SNPs
across these 17 transcripts were developed (Supplementary Table S1).
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Table 3. Candidate miRNAs in the QTLRs, by location (Galgal4).

QTLR Gene Name Ensembl Gene ID Chr Start End Length

5 gga-mir-6553 ENSGALG00000026406 1 76,381,420 76,381,519 100
7 gga-mir-1738 ENSGALG00000025522 1 104,085,133 104,085,223 91
12 gga-mir-1749 ENSGALG00000025364 2 569,326 569,423 98
12 gga-mir-6710 ENSGALG00000027384 2 724,388 724,497 110
18 gga-mir-1462 ENSGALG00000025207 4 8,488,386 8,488,495 110
25 gga-mir-1659 ENSGALG00000025154 7 13,177,026 13,177,126 101
25 gga-mir-6624 ENSGALG00000026751 7 15,758,919 15,759,028 110
25 gga-mir-1570 ENSGALG00000025238 7 16,274,218 16,274,317 100
26 gga-mir-6660 ENSGALG00000028738 10 1,076,742 1,076,851 110
30 gga-mir-1644 ENSGALG00000025220 14 8,124,516 8,124,601 86
31 gga-mir-6643 ENSGALG00000027935 14 13,143,450 13,143,559 110
31 gga-mir-1588 ENSGALG00000025419 14 14,125,510 14,125,611 102
31 gga-mir-1715 ENSGALG00000025576 14 14,285,835 14,285,936 102
35 gga-mir-6612 ENSGALG00000026265 24 4,779,927 4,780,036 110
35 gga-mir-6671 ENSGALG00000027111 24 5,035,783 5,035,892 110
35 gga-mir-1745 ENSGALG00000026550 24 5,163,387 5,163,473 87
37 gga-mir-6573 ENSGALG00000028331 27 1,532,553 1,532,671 119

QTLR—ordinal number of the QTLR (Table 1); Chr—chromosome; Start/End—miRNA bp coordinates, Length—size
of the miRNA (bp).

Table 4. Candidate lncRNA in the QTLRs, by location (Galgal4).

QTLR Gene ID; Transcript ID; Stable Transcript ID Chr Start End Length Distance Strand Exons

1 R192;R192.1;RI_1_8950428_8950983_1_1 1 8,950,428 8,950,983 556 + 1
3 R1291;R1291.1;RI_1_52122457_52122949_1_1 1 52,122,457 52,122,949 493 43,171,475 − 1
3 R1292;R1292.1;RI_1_52183105_52322961_6_1 1 52,183,105 52,322,961 139,857 60,157 − 6
3 R1293;R1293.2;RI_1_52481252_52482976_1_1 1 52,481,252 52,482,976 1725 158,292 − 1
3 R1293;R1293.3;RI_1_52481282_52488508_2_1 1 52,481,282 52,488,508 7227 −1693 − 2
20 R12773;R12773.1;RI_5_7604020_7604920_1_1 5 7,604,020 7,604,920 901 + 1
20 R12779;R12779.1;RI_5_7727117_7728010_1_1 5 7,727,117 7,728,010 894 122,198 − 1
20 R12784;R12784.1;RI_5_7960049_7961460_1_1 5 7,960,049 7,961,460 1412 232,040 + 1
21 R13147;R13147.6;RI_5_18814123_18815319_2_1 5 18,814,123 18,815,319 1197 10,852,664 + 2
21 R13148;R13148.1;RI_5_18861679_18862530_1_1 5 18,861,679 18,862,530 852 46,361 + 1
21 R13149;R13149.1;RI_5_19632618_19793846_5_1 5 19,632,618 19,793,846 161,229 770,089 − 5
24 R15316;R15316.1;RI_6_31138889_31157672_3_1 6 31,138,889 31,157,672 18,784 − 3
24 R15317;R15317.1;RI_6_31199730_31200561_1_1 6 31,199,730 31,200,561 832 42,059 − 1
24 R15318;R15318.1;RI_6_31204510_31210163_7_1 6 31,204,510 31,210,163 5654 3950 + 7
24 R15319;R15319.1;RI_6_31263768_31264516_1_1 6 31,263,768 31,264,516 749 53,606 + 1
24 R15320;R15320.2;RI_6_31277294_31279639_1_1 6 31,277,294 31,279,639 2346 12,779 − 1
24 R15321;R15321.1;RI_6_31368941_31369400_1_1 6 31,368,941 31,369,400 460 89,303 − 1

QTLR—ordinal number of the QTLR (Table 1); gene id; transcript id; stable transcript id—unique lncRNA identifier;
Chr—chromosome; Start/End—lncRNA bp coordinates; Length—size of the lncRNA (bp); Distance—bp between
lncRNAs on the same chromosome; negative labelled value—overlap between this lncRNA and the previous one.
Data from [43].

2.8.6. Selection of Potentially Functional Variants in Coding Genes

Analysis of the complete sequences of the 10 F0 birds showed multiple SNPs distinguishing the
founder birds that could impact gene function. Alternative variants fixed in one parental line compared
to the other and which were predicted to cause highly deleterious changes in the gene protein product,
were chosen as candidates for further study. Across the genome as a whole, a total of 252 variants of
this nature were identified in 217 genes, with 22 of these variants lying within genes underlying the
38 QTLR. Twelve of these variants (representing 9 genes) were segregating in one or more of the 8 elite
lines and were chosen for further studies in these lines. These 12 SNPs are summarized in Table 5.
Specific details on the detection assays are provided in Supplementary Table S1.
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Table 5. Markers in the QTLRs with genetic variations predicted to be functionally deleterious to the
gene product.

QTLR Gene Marker Chr bp Consequence Effect

14 ENSGALG00000015219 MD-07 2 107,385,545 S/* Stop gained
25 gga-mir-7474 MD-16 7 14,743,048 actgat Frame shift
26 ENSGALG00000001269 MD-20 10 48,846 P/X Frame shift
29 ENSGALG00000004078 MD-23 13 11,619,922 gtt/gGTTTtt Frame shift
30 IGSF6 MD-28 14 8,738,347 L/X Frame shift

32 BG1 MD-29 16 117,493 Splice site
acceptor

32 BG1 MD-30 16 118,808 Q/* Stop gained

32 ENSGALG00000028367 MD-32 16 206,100 Splice site
acceptor

32 ENSGALG00000028367 MD-33 16 206,241 Splice site
acceptor

36 ENSGALG00000003188 MD-44 26 4,629,538 *C Stop lost
37 SCN4A MD-45 27 1,646,318 aga/agaCAGAAAT Frame shift
37 SCN4A MD-46 27 1,646,601 Q/* Stop gained

QTLR—ordinal number of the QTLR (Table 1); Chr—chromosome; bp—Galgal4 location of deleterious variant;
Consequence—amino acid change; *—stop codon.

2.8.7. Selecting QTLR Markers from the Candidate Genomic Elements, for Genotyping in the 8 Elite
HL Pure Lines

Markers located in the genomic elements underlying the QTLR (genes, miRNAs, lncRNAs,
and singleton variants with potentially functional effects), were identified from genome sequences
aligned to the reference chicken genome for each of the lines utilized in this study. For the candidate
genes underlying the QTLR, SNPs predicted to alter amino acids were preferentially chosen. For all
genomic elements (not including the singleton functional mutations), variants were also selected to
encompass the entire gene when possible, so as to define the haplotype status of each bird for subsequent
association tests. All SNPs selected were validated using the same approach as defined above.

2.9. Genotyping of the Eight Elite Lines

Genomic DNA was extracted from whole blood using salt/ethanol precipitation and stored at
−20 ◦C until use. DNA was diluted in dH2O to 25 ng/uL. Genotyping was done as single-plex assays
on the SNPline system (LGC, UK). All assays used KASP chemistry, which is a fluorescent-based
competitive allele-specific detection method [52]. Genotyping was done in 1536 well plates, and results
analysed with Kraken software (LGC, Hoddesdon, UK) as previously described [53]. Specific details
on primers for each assay are provided in Table S1.

2.10. QTLR Association Analysis

Association of markers and marker-haplotypes with sires progeny-tested for post-challenge
survival in the 8 HL elite lines was tested using JMP Genomics SNP-Trait association Trend test
(JMP Genomics, Version 9, SAS Institute Inc., Cary, NC, USA, 1989-201). When analysing a line-marker
combination, the generation and MHC background were taken as class variables and fixed effects,
and when analysing a marker combining all lines together, the line was added to the fixed effects.
To obtain experimental significance thresholds, the proportion of false positives (PFP) [39,40] was used
to correct for multiple tests.

3. Results

3.1. High Resolution MD QTL Mapping in Advanced Full-Sib Inter-Cross F6 Families

Following genotyping of the F6 families by the Affymetrix 600K HD SNP chip, 40–43% of
SNPs (depending on family) were found to be informative and passed QC (total, 238,777 to 259,098
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informative SNPs per family; average of 246,400 SNPs in a family). The distribution of the marker
p-values was fairly uniform over the range of allele frequencies. A clear excess of small p-values
(an indication of presence of true QTL effects) was not seen. In accordance with this, only in families 2,
4 and 5, were markers significant at PFP ≤ 0.2. However, n1, the estimated number of falsified null
hypotheses at PFP ≤ 0.2 [39,40], ranged from 1718 in Family 1 (0.7% of all markers tested in the family)
to 17,385 in Family 2 (6.7% of markers tested), indicating the actual presence of true QTL effects.

As described in Methods, many markers were nominally significant, and distinct clusters of
nominally significant markers intermixed with non-significant markers were clearly seen. Hence,
to identify QTL we used a moving average of marker −Log10 p values (mAvg) across a window size
of 0.1 Mb (27 SNPs) to smooth the plots. Examining Manhattan plots (Figure 1 and Supplementary
Figure S1), showed that the smoothing did yield a good monotonic plot, allowing identification of QTL
and the use of the drop method [42] to define their boundaries.

Using a threshold of mAvg ≥ 2.0 and QTLR boundaries defined by Log Drop 1, a total of 57 regions
meeting our criteria for significance were identified, ranging from 4 to 16 in a family. In some families,
several regions clustered within 1 Mb of one another. Nine such chromosome-by-family clusters
were identified, containing 2–4 significant sub-regions per cluster. Conservatively, we counted each
cluster as representing a single within-family QTLR. Similarly, aligning QTLR maps of the five families,
showed that six significant regions overlapped or were within 1 Mb of one another across two families.
Here too, counting the same QTLR across different families only once, resulted in a final total of 38
QTLR being identified (Table 1). These 38 QTLR were the focus of further examination of variants as
defined by multiple methodologies employed below.

3.2. Annotation of QTLR

Transcripts of genes located under the 38 mapped QTLR were identified by using the Biomart tool
within the Ensembl database (v79) (Supplementary Table S2). The number of known annotated genes in
each QTLR ranged from 0 to 86, for a total of 1072 genes. Using the annotation developed and described
by Kuo et al. [43], which was based on characterisation of full-length transcripts using long-read
sequencing and a bioinformatics pipeline to define coding and non-coding RNAs, we identified 1–99
lncRNAs within each defined QTLR, with a total 1153 lncRNAs (Table 1).

3.3. Identification and Analysis of SNPs in F0 Parental Birds

To investigate variants residing in regions of the genome potentially associated with MDV
resistance, the 10 founder parents that gave rise to the F6 population used in this study were sequenced
and variants determined between males and females. Combined across both lines 8,273,112 SNPs
were identified. Examining the 38 QTLR within the genome highlighted 133,394 SNPs in these
regions, which were fixed for alternative SNP variants with one parental line compared to the other
(Supplementary Table S3). With a view to testing for causality, any of these variants could then be
tested for genetic association with the progeny-test for survival in the eight elite HL lines.

3.4. Transcriptomic Analysis of Male and Female Commercial Birds Challenged with MDV

Based on the observation noted above, that male and female birds tend to show differential
resistance, we examined the expression profiles of five male and five female W36 birds challenged
with vv+MDV, and five male and five female W36 non-challenged control birds (see Section 2.7).
Gene expression results from this transcriptomic analysis are presented in Table S4.

First, we compared gene expression in challenged and control chicks within each sex of W36 birds
to find that 185 genes (58 up- and 127 down-regulated) were differentially expressed in male chicks,
while there were 114 genes (62 up- and 52 down-regulated) differentially expressed upon challenge of
the female birds. When these genes are compared across sex, the individual responses are seen to be
quite different, with minimal overlap of DEGs between the male and female groups (Figure 2).
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When the different responses were compared, it is seen that biological pathways predominantly
involved in the host response in female chicks include activation of cancer signalling, whereas the
DEGs identified in the male birds have roles in the Th1 immune response and dendritic cell maturation
amongst others (Figure 3A). The diseases and biofunctions associated with the genes involved in
each response are depicted in Figure 3B. Strikingly, with MD being an oncogenic disease, functions
related to cancer and tumorigenesis are seen to be up-regulated in female birds, but are repressed in the
male chicks. Investigation of genes acting as upstream regulators of identified DEGs again indicates
differential regulatory mechanisms in each sex. TGFB appears to be a key regulator of mechanisms in
females, whereas STAT1 (an interferon response gene) is suggested to have a more prominent role in
the males (Figure 3C).
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Examination of the unchallenged control birds from each group (male and female W36 birds)
identified 302 genes which were expressed in an inherently different manner between the sexes. So,
these DEGs, being independent of MD challenge, are due to gender differences and/or intrinsic immune
differences, manifesting in differing resistance to infection. Significant DEGs include the obvious
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immune related genes, but also various serine proteases and carboxypeptidases, which may suggest
a role in resistance to MDV. Genes previously implicated in MDV resistance including MHC genes,
IRG1 [18] and SCYC1 [16], were also highlighted.

3.5. Analysis of Differentially Expressed Genes Located in QTLR

When DEGs are located within QTLR affecting MD resistance, it is plausible that these genes
may be the causative quantitative trait gene (QTG) responsible for the QTLR effect. Based on this
hypothesis, the list of genes located in the 38 QTLR identified in this study was compared to the list of
DEGs. Genes that were both expressed under challenge and that were also located under one of the
38 mapped QTL, were considered likely candidate QTG (Supplementary Table S5).

To determine if any particular types of genes were represented by the DEGs underlying significant
genomic regions (identified either from this or previous studies [31,33,54–56]), the gene ontologies
associated with these DEGs were studied. Table S6 shows that immunoglobulins, stimulus response
genes and genes involved in regulating the immune response are all highly represented. Analysis of
the biological pathways controlled by these genes was also examined. To look for possible common
pathways, network analysis was performed. Three networks stood out significantly: cell movement,
cell signalling, and cancer (Figure 4A); cell signalling and nervous system development (Figure 4B);
antimicrobial resistance, inflammation, and cell death (Figure 4C). When candidate upstream regulators
of these genes were investigated, the cytokines TNF, EDN1, IL1B and IFNG were all indicated as
potentially regulating many of the genes under study. Interestingly, the TNF gene is located in QTLR
18 on Chr 4,387,071 bp downstream of the top window in this QTLR.
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3.6. Validating QTLR for Association with MDV Resistance

3.6.1. Populations, Genomic Elements and Markers

In a unique aspect of this study, QTLR identified in the F6 mapping population were re-tested for
association with MD resistance in 8 pure lines maintained under selection for multiple commercial
production traits at HL. Markers for QTLR validation were chosen from among the various classes of
genomic elements identified underlying the QTLR, namely genes, miRNAs and lncRNAs. Also included
were a group of singleton coding SNPs predicted to have deleterious effects on protein structure and
function (the functional mutations).

3.6.2. Genetic Association Tests

When possible, a number of markers were genotyped in each candidate gene, so that association
could be based on marker haplotypes rather than individual markers. When this is done, all of the
information is in the ‘Haplotypes’. The individual markers are usually in complete LD and hence do
not add anything to the analysis. Thus, for statistical analyses what is important are the number of
element x line tests, rather than number of marker x line tests. We counted an element x line test as
significant if the haplotype was significant, or if one or more markers in the element was significant.

A total of 355 markers located in 66 genetic elements (genes, miRNA, lncRNA, and functional
mutations) underlying 26 of the 38 QTLR were tested for association with MD mortality in the 8 elite
lines (Supplementary Table S7). In 46 of the elements, multi-marker haplotypes were also tested.
The association tests were carried out separately within each of the 8 elite lines, and also in data
combined across the 8 lines, yielding 2032 p-values. A total of 387 element by line tests were performed.

Significance of individual candidate genes: Twenty genes located in the QTLR were tested by a
total of 127 gene x line tests of markers encompassing the entire gene. A test was considered significant
if the haplotype x line test was significant, or if any one of the markers encompassing the haplotype
were significant. All but IL4I1, TAGLN and CD79B (in QTLR 32, 35 and 37), were significant in two or
more marker x line tests. Thus, 17 genes may be taken as strong candidates to be a QTG (Table S8).

Association of markers located in miRNA: A total of 17 miRNAs were chosen (Table 3), and 28
markers tested for association (Supplementary Table S7) for a total of 96 element x line tests. Only 5
significant to highly significant p-values were obtained. (Supplementary Table S8).

Significance of individual miRNAs: Significant results were found in only five out of the 17 miRNA
tested. Most interesting was gg-mir-6553 with the highest proportion of significant tests among the
miRNAs (Supplementary Table S8). This miRNA is located in QTLR 5, along with three significant
genes (CSTA, LAG3, and C1S). The results indicate two putative causative quantitative elements in this
QTLR: one upstream in the region of CSTA, the other downstream in the region of LAG3 and C1S.

Associations of markers located in lncRNAs: A total 17 lncRNAs were chosen (Table 4),
and 80 markers were tested for association (Table S7) in a total of 114 element x line tests, of which 9
were significant (Supplementary Table S8).

Significance of individual lncRNAs: Significant results were found with 9 of the 17 lncRNAs tested
(Table S8). QTLR worth mentioning are 20 and 21 on Chr5, both tested by lncRNAs only, are detailed
in Supplementary File S1.

Associations of QTLR functional mutations in coding genes: Twelve potentially functional
mutations were tested in a total of 50 element x line tests, of which six were significant (Table 5).

Significance of genes harbouring potentially functional mutations: Significant results were found
in 5 of the 9 QTLR genes harbouring potentially functional mutations. In Line WPR1, the 2 markers in
the gene BG1 (markers MD-29 and MD-30 in QTLR 32 on Chr 16) had practically the same p-values as
the markers of the candidate gene TAP1 (Supplementary Table S8), thus strengthening the results of
that gene. It should be noted that BG1 and TAP1 lie within the chicken MHC, as noted above, a locus
known to impact MDV resistance.
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3.6.3. Summary of Element x Line Tests

Supplementary Table S9 summarises the element x line tests by type of element. Tests of the
coding genes are outstanding in the high proportion of significant element x line tests; more than
double that of the other genomic elements. Since the candidate genes were chosen on the basis of
much more information than the other classes of elements, the high proportion of significant tests can
be taken to support the proposition that the process by which the candidate genes were selected was
effective and that an appreciable fraction of the chosen candidate genes are the actual quantitative trait
genes. This must be qualified, however, as the distribution of the different classes of genomic elements
among the QTLRs was not random, and thus may be biasing the results.

3.7. Validation of QTLR

A total of 26 QTLR were tested for significance of element x line tests. Of these, eight did not have
any significant element x line tests, five had one significant test and 14 had 2–6 significant element
x line tests. Thus, 18 QTLR can be considered as validated. Of the unconfirmed QTLR, QTLRs 1,
3, and 24 were tested by lncRNAs only, QTLRs 12 and 18 by miRNAs only, QTLR 14 by functional
mutations only, and QTLR 25 by both miRNA and functional mutations. More markers need to be
tested in these QTLR to decide if the lack of significance is a result of lack of informativity (Type 2
error), or if indeed these QTLR are false positives (Type I error). More detail on the association found
within each individual QTLR is presented in Supplementary File S1.

4. Discussion

QTL mapping in an FSIL F6 population phenotyped for survival in the face of MDV challenge,
identified 38 QTLR distributed over 19 autosomes. Use of such a resource allowed for the identification
of QTLR at a higher resolution than have been mapped previously, thus allowing for easier identification
of potential candidate genes. The mapped QTLR, along with genomic sequences of the F0 founder
individuals, and transcriptomic information from challenged and control birds, has allowed us to
identify genes, miRNAs, lncRNAs, and potentially functional mutations located under these QTLR as
candidates for association with progeny mortality from Marek’s disease. Genetic association studies in
multiple elite lines have confirmed the significant effects of most of these candidates on MD. Here we
will discuss the potential role of some of the most significant candidates.

Many of the genes we have associated with MD response in this study have biological roles
clearly relevant to the pathogenesis of MDV infection. One of the primary targets of the virus are
B-cells and genes known to be associated with B-cells, include two of our candidates, CD7 and TLR4.
CD7 is a surface antigen found on naive and memory T-cells, as well as defined NK cell progenitors,
and provides survival signaling through its tyrosine kinase activity in association with T-cell activation
and is involved in T-cell/B-cell interactions. The Toll-like receptor, TLR4 is found on the surface of
B-lymphocytes and macrophages and drives the induction of IL-1 β, TNFα, and other pro-inflammatory
cytokines implicated as being important in this study.

After initial infection and a period of latency, T-cells become infected. Genes related to T-cell
signalling pathways include our MD-associated ADAMTS5, CD7, HAVCR1, LAG3, RELT, TIMD4
and TREML2. ADAMTS5 (ADAM Metallopeptidase with Thrombospondin Type 1 Motif 5) encodes
a metalloproteinase that plays an important role in inflammation and cell migration. It also has a
critical role in T-lymphocyte migration from draining lymph nodes following viral infection. HAVCR1,
Hepatitis A Virus Cellular Receptor 1 (T-Cell Immunoglobulin Mucin Receptor 1), is a receptor for
TIMD4. HAVCR1 plays a critical role in regulating immune cell activity, particularly regarding the
host response to viral infection, while TIMD4 is a T-cell immunoglobulin involved in regulating T-cell
proliferation and lymphotoxin signalling. LAG3 (Lymphocyte-Activation Gene 3) belongs to the
immunoglobulin superfamily and acts as an inhibitory receptor on activated T-cells. It negatively
regulates the activation, proliferation, and effector function of both CD8+ and CD4+ T-cells as well as
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mediating immune tolerance. RELT is a member of the TNF-receptor superfamily. It can activate the
NF-kappaB pathway and selectively bind TNF receptor-associated factor 1 (TRAF1). This receptor
acts via CD3 signalling to stimulate T-cell proliferation, suggesting its regulatory role in the immune
response. TREML2 (Triggering Receptor Expressed on Myeloid Cells Like 2) is a cell surface receptor
that may play a role in both the innate and adaptive immune responses. It interacts with CD276 on
T-cells, enhancing T-cell activation.

Once infection of T-cells has occurred, the disease can then proceed to become oncogenic.
Once again, we see that many of our MD associated genes have functions that have been implicated
in cancer, including BG1 which encodes an Ig-superfamily type I transmembrane receptor-like
protein that contains an immuno-receptor tyrosine-based inhibition motif (ITIM). BG1 has previously
been documented as conferring MHC-associated resistance to MDV-induced lymphoma [57].
Other candidates include BRINP1 (silenced in some bladder cancers), CD7 (associated with leukaemia),
CSTA (encodes a stefin that functions as a cysteine protease inhibitor, suggested as a prognostic tool
for cancer), and SUPT20H (a known tumour rejection antigen). FLT3 is another significant candidate,
with mutations in this gene being common in acute myeloid leukaemia. FLT3 is involved in activation
of various pathways including apoptosis, and proliferation and differentiation of hematopoietic cells.

One of the main pathologies of MD is its effect on the nervous system, and so it is interesting to
see that some of our MD associated genes are involved in the function/growth of neurons (SCN4A and
CTNNA2). SCN4A (Sodium Voltage-Gated Channel α Subunit 4) encodes one member of the sodium
channel α subunit gene family involved in generation and propagation of action potentials in neurons
and muscle. CTNNA2 (Catenin α 2) is thought to be involved in the regulation of cell–cell adhesion
and differentiation in the nervous system. It is required for proper regulation of cortical neuronal
migration and neurite growth.

The remaining MD associated genes are seen to have general roles as immune system genes:
C1S, TAP1 and SOCS1. C1S (Complement component 1S) encodes a serine protease component of
the complement system which enhances the host antibody immune response. TAP1 (Transporter 1,
ATP Binding Cassette Subfamily B Member) is involved in the transport of antigens from the cytoplasm
to the endoplasmic reticulum for association with MHC class I molecules. SOCS1 (Suppressor of
Cytokine Signalling 1) encodes a protein which functions downstream of cytokine receptors, and takes
part in a negative feedback loop to attenuate cytokine signaling via the JAK/STAT3 pathway. All of
these candidate genes had more than one test significant at p ≤ 0.05.

We would hypothesize that many of our candidate genes are working in conjunction with each
other to confer the resistance phenotype, whether that be through their proximity in the genome
(e.g., CSTA, LAG3 and C1S on Chr5 and HAVCR1 and TIMD4 on Chr13) or their interaction in biological
networks (e.g., SOCS1, TLR4 and TREML2 or RELT, LAG3, HAVCR1 and TIMD4). This would support
the idea that some traits may be associated with pathway-level interactions as opposed to discrete
gene functions [58,59].

Examination of these genes and their significance of association with MDV resistance across the
elite lines indicates a few top candidates, namely: the cluster of genes in QTLR5 (CSTA, C1S and
LAG3), FLT3 in QTLR10, CTNNA2 in QTLR19 and TAP1 in QTLR32. It is also interesting to note the
distribution of associated genes across the different lines of birds. Examination of the coding candidate
genes shows that only two genes, FLT3 and CTNNA2, are significant in all three varieties of birds.
The genes ADAMTS5 and TAP1 only showed significant association in Plymouth Rock birds, whereas
CSTA, LAG3, C1S, SUPT20H and the functional variant in SCN4A identified as significant candidates
in White Leghorn and Rhode Island Red breeds. Finally, several genes are only significant in White
Leghorns, namely RELT, TRANK1, HAVCR1, TIMD4, SOCS1, TLR4, CD7, TREML2, along with the
functional variant in ENSGALG00000003188.

Genes identified in this analysis include many novel candidates for resistance as well as highlighting
genes proposed in previous studies. For example CD8B (T-cell glycoprotein), CTLA4 (immunoglobulin)
and CD72 (B-cell associated) are postulated as important lncRNA target genes by You et al. [24] and
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are found under our QTLRs (CD8B—QTLR19), and differentially expressed in our transcriptomic
work (CTLA4 and CD72). Similarly, ATF2 (involved in carcinogenesis is found in QTLR25) was
proposed as an important target for the miRNA gga-mir15b during MDV infection [25]. Also in QTLR25
we find gga-mir-10b, previously seen to be upregulated in the spleen during MDV infection [27].
Other potentially interesting miRNA targets include PBEF1 (pre-B-cell enhancing factor) and FCHSD2
(involved in endocytosis) [26] that lie under QTLR2 and 11, respectively. Further genes previously
linked with MDV resistance include GH1 (growth hormone) and CD79B (B-cell antigen), both of which
lie under our QTLR37.

One of the significant aspects of this research is that it utilized large, commercial production
relevant lines, and the challenge virus is a very virulent ++ strain, frequently encountered by production
birds in the field. In contrast, most previously published MDV resistance research utilizes specialized
research lines, many of which are inbred, and selected for differential response to MDV. These studies
utilized laboratory strains of the virus, for which commercial production birds now appear to be
resistant. Furthermore, this study investigated MD resistance genes in three distinct breeds of chickens,
namely White Leghorn, White Plymouth Rock, and Rhode Island Red, not just one laboratory line.
Moreover, these MD association studies replicated the results from the FSIL study increasing our
confidence in the causal nature of the QTLR, and possibly the genes and variants in MDV resistance.
The response to the virus was measured as mortality in a large progeny group (approximately
30 daughters) for over 9000 sires, using pre-existing information that had been developed within a
commercially relevant production trait breeding program. This unique approach increases the relevance
of the results to application into a commercial breeding program, while simultaneously provides
information on the underlying mechanism of general viral resistance applicable to not only birds, but
also other species. This information can provide insights into mechanisms for improving resistance or
lead to the development of improved commercial vaccines.

5. Conclusions

Utilizing an FSIL F6 population of birds phenotyped for response to Marek’s disease virus infection
has allowed us to map QTLR for disease resistance at high-resolution. Combining this with expression
data from challenged and control birds, we have identified candidate genes, miRNAs, lncRNAs and
potentially functional mutations which have been validated in genetic association tests with MD
mortality in diverse, commercially relevant, elite lines of poultry. This most comprehensive genetic
study to date supplies us with variants in candidate genes that can now go on to be functionally tested
for their utility in marker assisted selection, improved vaccine development, and potential future gene
editing strategies.
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