9 research outputs found

    Biomarkers of Venous Thromboembolism Recurrence after Discontinuation of Low Molecular Weight Heparin Treatment for Cancer-Associated Thrombosis (HISPALIS-Study)

    Get PDF
    The most appropriate duration of anticoagulant treatment for cancer-associated venous thromboembolism (CAT) remains unclear. We have conducted a prospective multicenter study in CAT patients with more than 6 months of anticoagulant treatment to predict the risk of venous thromboembolism (VTE) recurrence after anticoagulation discontinuation. Blood samples were obtained when patients stopped the anticoagulation, at 21 days and at 90 days. In each sample we assessed different coagulation-related biomarkers: D-dimer (DD), high-sensitivity C-reactive protein (hs-CRP), P-selectin (PS), phospholipids, soluble tissue factor, factor VIII and the thrombin generation test. It was evaluated 325 CAT patients and 166 patients were included in the study, mean age 64 ± 17 years. VTE recurrence until 6 months after stopping anticoagulation treatment was 9.87% [95% confidence interval (CI): 6–15]. The biomarkers sub-distribution hazard ratios were 6.32 for ratio DD basal/DD 21 days > 2 (95% CI: 1.82–21.90), 6.36 for hs-CRP > 4.5 (95% CI: 1.73–23.40) and 5.58 for PS > 40 (95% CI: 1.46–21.30) after 21 days of stopping anticoagulation. This is the first study that has identified the DD ratio, hs-CRP and PS as potential biomarkers of VTE recurrence in cancer patients after the discontinuation of anticoagulation treatment. A risk-adapted strategy may allow the identification of the optimal time to withdraw the anticoagulation in each CAT patientmThis research was funded by Instituto de Salud Carlos III, grant number (PI15/01085; PI18/01640, PI20/00075), Sociedad Española de Trombosis y Hemostasia; Fundación Respira, grant number (140/2013), Fundación Neumosur, grant number (5/2013) and the LEO Pharma Research Foundation. Partial funding for open access charge: Universidad de Málaga

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.S.E.H. and C.A.S. partially supported genotyping through a philanthropic donation. A.F. and D.E. were supported by a grant from the German Federal Ministry of Education and COVID-19 grant Research (BMBF; ID:01KI20197); A.F., D.E. and F.D. were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). D.E. was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). D.E., K.B. and S.B. acknowledge the Novo Nordisk Foundation (NNF14CC0001 and NNF17OC0027594). T.L.L., A.T. and O.Ö. were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. M.W. and H.E. are supported by the German Research Foundation (DFG) through the Research Training Group 1743, ‘Genes, Environment and Inflammation’. L.V. received funding from: Ricerca Finalizzata Ministero della Salute (RF-2016-02364358), Italian Ministry of Health ‘CV PREVITAL’—strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ‘REVEAL’; Fondazione IRCCS Ca’ Granda ‘Ricerca corrente’, Fondazione Sviluppo Ca’ Granda ‘Liver-BIBLE’ (PR-0391), Fondazione IRCCS Ca’ Granda ‘5permille’ ‘COVID-19 Biobank’ (RC100017A). A.B. was supported by a grant from Fondazione Cariplo to Fondazione Tettamanti: ‘Bio-banking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by an MIUR grant to the Department of Medical Sciences, under the program ‘Dipartimenti di Eccellenza 2018–2022’. This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP (The Institute for Health Science Research Germans Trias i Pujol) IGTP is part of the CERCA Program/Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIII-MINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). M.M. received research funding from grant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIII-Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (European Regional Development Fund (FEDER)-Una manera de hacer Europa’). B.C. is supported by national grants PI18/01512. X.F. is supported by the VEIS project (001-P-001647) (co-funded by the European Regional Development Fund (ERDF), ‘A way to build Europe’). Additional data included in this study were obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, European Institute of Innovation & Technology (EIT), a body of the European Union, COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. A.J. and S.M. were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). A.J. was also supported by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the European Regional Development Fund (FEDER). The Basque Biobank, a hospital-related platform that also involves all Osakidetza health centres, the Basque government’s Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. M.C. received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). M.R.G., J.A.H., R.G.D. and D.M.M. are supported by the ‘Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III’ (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100) and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón’s team is supported by CIBER of Epidemiology and Public Health (CIBERESP), ‘Instituto de Salud Carlos III’. J.C.H. reports grants from Research Council of Norway grant no 312780 during the conduct of the study. E.S. reports grants from Research Council of Norway grant no. 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). P.K. Bergisch Gladbach, Germany and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF). O.A.C. is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—CECAD, EXC 2030–390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. K.U.L. is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. F.H. was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to A.R. from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme—Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to A.R. P.R. is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). F.T. is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). C.L. and J.H. are supported by the German Center for Infection Research (DZIF). T.B., M.M.B., O.W. und A.H. are supported by the Stiftung Universitätsmedizin Essen. M.A.-H. was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. E.C.S. is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).Peer reviewe

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended GWAS meta-analysis of a well-characterized cohort of 3,260 COVID-19 patients with respiratory failure and 12,483 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen (HLA) region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a highly pleiotropic ∼0.9-Mb inversion polymorphism and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.Andre Franke and David Ellinghaus were supported by a grant from the German Federal Ministry of Education and Research (01KI20197), Andre Franke, David Ellinghaus and Frauke Degenhardt were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic Inflammation” (EXC2167). David Ellinghaus was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). David Ellinghaus, Karina Banasik and Søren Brunak acknowledge the Novo Nordisk Foundation (grant NNF14CC0001 and NNF17OC0027594). Tobias L. Lenz, Ana Teles and Onur Özer were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. Mareike Wendorff and Hesham ElAbd are supported by the German Research Foundation (DFG) through the Research Training Group 1743, "Genes, Environment and Inflammation". This project was supported by a Covid-19 grant from the German Federal Ministry of Education and Research (BMBF; ID: 01KI20197). Luca Valenti received funding from: Ricerca Finalizzata Ministero della Salute RF2016-02364358, Italian Ministry of Health ""CV PREVITAL – strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ""REVEAL""; Fondazione IRCCS Ca' Granda ""Ricerca corrente"", Fondazione Sviluppo Ca' Granda ""Liver-BIBLE"" (PR-0391), Fondazione IRCCS Ca' Granda ""5permille"" ""COVID-19 Biobank"" (RC100017A). Andrea Biondi was supported by the grant from Fondazione Cariplo to Fondazione Tettamanti: "Biobanking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by a MIUR grant to the Department of Medical Sciences, under the program "Dipartimenti di Eccellenza 2018–2022". This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP. IGTP is part of the CERCA Program / Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIIIMINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). Marta Marquié received research funding from ant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIIISubdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (FEDER-Una manera de hacer Europa").Beatriz Cortes is supported by national grants PI18/01512. Xavier Farre is supported by VEIS project (001-P-001647) (cofunded by European Regional Development Fund (ERDF), “A way to build Europe”). Additional data included in this study was obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, EIT COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. Antonio Julià and Sara Marsal were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). Antonio Julià was also supported the by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the FEDER. The Basque Biobank is a hospitalrelated platform that also involves all Osakidetza health centres, the Basque government's Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. Mario Cáceres received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). Manuel Romero Gómez, Javier Ampuero Herrojo, Rocío Gallego Durán and Douglas Maya Miles are supported by the “Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III” (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100), and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón's team is supported by CIBER of Epidemiology and Public Health (CIBERESP), "Instituto de Salud Carlos III". Jan Cato Holter reports grants from Research Council of Norway grant no 312780 during the conduct of the study. Dr. Solligård: reports grants from Research Council of Norway grant no 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). Philipp Koehler has received non-financial scientific grants from Miltenyi Biotec GmbH, Bergisch Gladbach, Germany, and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF).Oliver A. Cornely is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – CECAD, EXC 2030 – 390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. Genotyping was performed by the Genotyping laboratory of Institute for Molecular Medicine Finland FIMM Technology Centre, University of Helsinki. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. Kerstin U. Ludwig is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. Frank Hanses was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to Alfredo Ramirez from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme – Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to Alfredo Ramirez. Philip Rosenstiel is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). Florian Tran is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic Inflammation” (EXC2167). Christoph Lange and Jan Heyckendorf are supported by the German Center for Infection Research (DZIF). Thorsen Brenner, Marc M Berger, Oliver Witzke und Anke Hinney are supported by the Stiftung Universitätsmedizin Essen. Marialbert Acosta-Herrera was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. Eva C Schulte is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).N

    Significado pronóstico de los diagnósticos alternativos a la TEP hallados en la tomografía computarizada de tórax de pacientes ingresados por agudización de EPOC: subanálisis predefinido del ensayo SLICE.

    No full text
    Among patients hospitalized for an exacerbation of chronic obstructive pulmonary disease (COPD), the SLICE trial showed that the addition of an active diagnostic strategy for pulmonary embolism (PE) to usual care compared with usual care alone did not improve a composite set of health outcomes. The objective of this subanalysis was to determine the frequency and prognostic significance of findings on computed tomography pulmonary angiogram (CTPA) supporting an alternative diagnosis to PE. We analyzed all patients randomized to the intervention in the SLICE trial who received a CTPA that did not show PE. We used multivariable logistic regression to assess the independent association between findings supporting an alternative diagnosis to PE and a composite of readmission for COPD or death within 90 days after randomization. Among the 746 patients who were randomized, this subanalysis included 175 patients in the intervention group who received a CTPA that did not show PE. Eighty-four (48.0%) patients had acute bronchial infection, 13 (7.4%) had lung cancer, 10 (5.7%) had congestive heart failure, 8 (4.6%), 18 (10.3%) had other diagnoses, and 42 (24.0%) had a normal CTPA. In multivariable analysis, findings supporting an alternative diagnosis to PE were not significantly associated with the primary outcome (odds ratio: 0.64; 95% confidence interval: 0.30-1.38; P=0.26). Among patients hospitalized for an exacerbation of COPD, CTPA identified an alternative diagnosis in 76% of the patients. However, specific management of these patients was not associated with improved outcomes within 90 days after randomization

    Tinzaparin in cancer associated thrombosis beyond 6months: TiCAT study.

    No full text
    The safety and efficacy of low-molecular-weight heparin (LMWH) treatment in patients with cancer-associated thrombosis (CAT) beyond 6months are unknown. Our aim was to determine the safety of long-term tinzaparin use in patients with CAT. We performed a prospective, open, single arm, multicentre study in patients with CAT receiving treatment with tinzaparin. We evaluated the rate of clinically relevant bleeding events (major and non-major clinically relevant bleeding) and venous thromboembolism (VTE) recurrence. A total of 247 patients were recruited, with a crude incidence of major bleeding of 4.9% (12/247). The rate of clinically relevant bleeding during months 1-6 and 7-12, was 0.9% [95% confidence interval (95% CI) 0.5 to 1.6%] and 0.6% (95% CI 0.2 to 1.4%) (p=0.5) per patient and month, respectively. Male gender showed greater risk for clinically relevant bleeding with a hazard ratio (HR) of 2.97 (95% CI 1.01 to 8.1; p=0.02). The incidence of VTE recurrence at months 1-6 and 7-12 was 4.5% (95% CI 2.2 to 7.8%) and 1.1% (95% CI 0.1 to 3.9%), respectively. One patient died due to VTE recurrence and two because of severe bleeding. Treatment with tinzaparin beyond 6months is safe in patients with CAT

    D-dimer and high-sensitivity C-reactive protein levels to predict venous thromboembolism recurrence after discontinuation of anticoagulation for cancer-associated thrombosis.

    No full text
    Optimal duration of anticoagulation for cancer-associated thrombosis (CAT) remains unclear. This study assessed D-dimer (DD) and high-sensitivity C-reactive protein (hs-CRP) levels after the withdrawal of anticoagulation treatment to predict the risk of venous thromboembolism (VTE) recurrence among patients with CAT. Prospective, multicentre study to evaluate CAT with ≥3 months of anticoagulation that was subsequently discontinued. Blood samples were taken when patients stopped the anticoagulation and 21 days later to determine the DD and hs-CRP levels. All patients were followed up for 6 months to detect VTE recurrence. Between 2013 and 2015, 325 patients were evaluated and 114 patients were ultimately enrolled in the study. The mean age was 62 ± 14 years and nearly 40% had metastasis. Ten patients developed VTE recurrence within 6 months (8.8%, 95% confidence interval [CI]: 4.3-15.5%). The DD and hs-CRP levels after 21 days were associated with VTE recurrence. The subdistribution hazard ratios were 9.82 for hs-CRP (95% CI: 19-52) and 5.81 for DD (95% CI: 1.1-31.7). This study identified that hs-CRP and DD were potential biomarkers of VTE recurrence after discontinuation of anticoagulation in CAT. A risk-adapted strategy could identify low-risk patients who may benefit from discontinuation of anticoagulation

    D-dimer and high-sensitivity C-reactive protein levels to predict venous thromboembolism recurrence after discontinuation of anticoagulation for cancer-associated thrombosis

    No full text
    Optimal duration of anticoagulation for cancer-associated thrombosis (CAT) remains unclear. This study assessed D-dimer (DD) and high-sensitivity C-reactive protein (hs-CRP) levels after the withdrawal of anticoagulation treatment to predict the risk of venous thromboembolism (VTE) recurrence among patients with CAT. Prospective, multicentre study to evaluate CAT with ≥3 months of anticoagulation that was subsequently discontinued. Blood samples were taken when patients stopped the anticoagulation and 21 days later to determine the DD and hs-CRP levels. All patients were followed up for 6 months to detect VTE recurrence. Between 2013 and 2015, 325 patients were evaluated and 114 patients were ultimately enrolled in the study. The mean age was 62 ± 14 years and nearly 40% had metastasis. Ten patients developed VTE recurrence within 6 months (8.8%, 95% confidence interval [CI]: 4.3-15.5%). The DD and hs-CRP levels after 21 days were associated with VTE recurrence. The subdistribution hazard ratios were 9.82 for hs-CRP (95% CI: 19-52) and 5.81 for DD (95% CI: 1.1-31.7). This study identified that hs-CRP and DD were potential biomarkers of VTE recurrence after discontinuation of anticoagulation in CAT. A risk-adapted strategy could identify low-risk patients who may benefit from discontinuation of anticoagulation

    The ABO blood group locus and a chromosome 3 gene cluster associate with SARS-CoV-2 respiratory failure in an Italian-Spanish genome-wide association analysis

    No full text
    [Background] Respiratory failure is a key feature of severe Covid-19 and a critical driver of mortality, but for reasons poorly defined affects less than 10% of SARS-CoV-2 infected patients.[Methods] We included 1,980 patients with Covid-19 respiratory failure at seven centers in the Italian and Spanish epicenters of the SARS-CoV-2 pandemic in Europe (Milan, Monza, Madrid, San Sebastian and Barcelona) for a genome-wide association analysis. After quality control and exclusion of population outliers, 835 patients and 1,255 population-derived controls from Italy, and 775 patients and 950 controls from Spain were included in the final analysis. In total we analyzed 8,582,968 single-nucleotide polymorphisms (SNPs) and conducted a metaanalysis of both case-control panels.[Results] We detected cross-replicating associations with rs11385942 at chromosome 3p21.31 and rs657152 at 9q34, which were genome-wide significant (P<5×10-8) in the meta-analysis of both study panels, odds ratio [OR], 1.77; 95% confidence interval [CI], 1.48 to 2.11; P=1.14×10-10 and OR 1.32 (95% CI, 1.20 to 1.47; P=4.95×10-8), respectively. Among six genes at 3p21.31, SLC6A20 encodes a known interaction partner with angiotensin converting enzyme 2 (ACE2). The association signal at 9q34 was located at the ABO blood group locus and a blood-group-specific analysis showed higher risk for A-positive individuals (OR=1.45, 95% CI, 1.20 to 1.75, P=1.48×10-4) and a protective effect for blood group O (OR=0.65, 95% CI, 0.53 to 0.79, P=1.06×10-5).[Conclusions] We herein report the first robust genetic susceptibility loci for the development of respiratory failure in Covid-19. Identified variants may help guide targeted exploration of severe Covid19 pathophysiology.The IKMB's core facilities received infrastructure support by the Deutsche Forschungsgemeinschaft (DFG) Cluster of Excellence "Precision Medicine in Chronic Inflammation" (PMI, EXC2167). The project also received support through a philanthropic donation by Stein Erik Hagen and Canica AS. L.V. was funded by the Fondazione IRCCS Ca’ Granda «COVID-19 Biobank» research grant. This work was also supported by the Ministero dell’Istruzione, dell’Università e della Ricerca – MIUR project "Dipartimenti di Eccellenza 2018 – 2022" (n° D15D18000410001) to the Department of Medical Sciences, University of Torino. The IKMB authors received financial support from the UKSH Foundation "Gutes Tun!" (special thanks to Alexander Eck, Jenspeter Horst and Jens Scholz) and the German Federal Ministry of Education and Research (BMBF; grant ID 01KI20197). HLA-Typing was performed and supported by the Stefan-MorschStiftung. M.A.H was supported by the Spanish Ministry of Science and Innovation ‘JdC fellowship IJC2018-035131-I.N
    corecore