51 research outputs found

    Sensitivity of the green algae Chlamydomonas reinhardtii to gamma radiation: Photosynthetic performance and ROS formation

    Get PDF
    Embargo until December 06 2018.The aquatic environment is continuously exposed to ionizing radiation from both natural and anthropogenic sources, making the characterization of ecological and health risks associated with radiation of large importance. Microalgae represent the main source of biomass production in the aquatic ecosystem, thus becoming a highly relevant biological model to assess the impacts of gamma radiation. However, little information is available on the effects of gamma radiation on microalgal species, making environmental radioprotection of this group of species challenging. In this context, the present study aimed to improve the understanding of the effects and toxic mechanisms of gamma radiation in the unicellular green algae Chlamydomonas reinhardtii focusing on the activity of the photosynthetic apparatus and ROS formation. Algal cells were exposed to gamma radiation (0.49–1677 mGy/h) for 6 h and chlorophyll fluorescence parameters obtained by PAM fluorometry, while two fluorescent probes carboxy-H2DFFDA and DHR 123 were used for the quantification of ROS. The alterations seen in functional parameters of C. reinhardtii PSII after 6 h of exposure to gamma radiation showed modifications of PSII energy transfer associated with electron transport and energy dissipation pathways, especially at the higher dose rates used. Results also showed that gamma radiation induced ROS in a dose-dependent manner under both light and dark conditions. The observed decrease in photosynthetic efficiency seems to be connected to the formation of ROS and can potentially lead to oxidative stress and cellular damage in chloroplasts. To our knowledge, this is the first report on changes in several chlorophyll fluorescence parameters associated with photosynthetic performance and ROS formation in microalgae after exposure to gamma radiation.acceptedVersio

    Effects of temperature and photoperiod on photosynthesis in everbearing strawberry

    Get PDF
    There is little knowledge about photosynthesis in everbearing strawberry cultivars. We therefore grew three everbearing strawberry cultivars in daylight phytotron compartments at temperatures of 9, 15, 21 and 27°C and photoperiods of 10 h (SD) and 20 h (LD). After three weeks, the rates of dark respiration and photosynthesis and their acclimation were measured in 'Favouri'. Photosynthesis of plants grown in the various conditions was measured as CO2-uptake with an infrared gas analyzer at increasing irradiances (50-1000 µmol quanta m‑2 s‑1) and temperatures ranging from 9 to 27°C. In the dark, CO2-production (dark respiration) increased with increasing measuring temperature and was always largest in plants grown at low temperature (9°C) with no significant effect of photoperiod. Photosynthetic CO2-uptake was lowest at almost all irradiances in plants grown at 9°C, and with no clear effect of growth temperatures in the 15-27°C range. At saturating irradiances (500-1000 µmol), CO2-uptake increased with increasing measuring temperatures, reaching a plateau at about 21°C for plants grown at 15-27°C in SD and at 21-27°C in LD. For plants grown at 15°C in LD, the maximum CO2-uptake rate was obtained at 27°C. Light response curves showed that CO2-uptake increased with increasing irradiance and measuring temperatures and that the irradiance effect was markedly enhanced by increasing growth temperature. Maximum uptake rates were lowest for plants grown at 9°C at both photoperiods and highest for plants grown at 15°C in SD. Comparison of plants of 'Altess', 'Favouri' and 'Murano' at 500 µmol irradiance and 21°C revealed no significant differences in photosynthetic efficiency between the cultivars. Generally, the everbearing strawberry cultivars showed considerable photosynthetic plasticity to temperature within the 9-27°C range, although with an overall optimum at 15-21°C.acceptedVersio

    Ultraviolet B modulates gamma radiation-induced stress responses in Lemna minor at multiple levels of biological organisation

    Get PDF
    Elevated levels of ionizing and non-ionizing radiation may co-occur and pose cumulative hazards to biota. However, the combined effects and underlying toxicity mechanisms of different types of radiation in aquatic plants remain poorly understood. The present study aims to demonstrate how different combined toxicity prediction approaches can collectively characterise how chronic (7 days) exposure to ultraviolet B (UVB) radiation (0.5 W m−2) modulates gamma (γ) radiation (14.9, 19.5, 43.6 mGy h−1) induced stress responses in the macrophyte Lemna minor. A suite of bioassays was applied to quantify stress responses at multiple levels of biological organisation. The combined effects (no-enhancement, additivity, synergism, antagonism) were determined by two-way analysis of variance (2 W-ANOVA) and a modified Independent Action (IA) model. The toxicological responses and the potential causality between stressors were further visualised by a network of toxicity pathways. The results showed that γ-radiation or UVB alone induced oxidative stress and programmed cell death (PCD) as well as impaired oxidative phosphorylation (OXPHOS) and photosystem II (PSII) activity in L. minor. γ-radiation also activated antioxidant responses, DNA damage repair and chlorophyll metabolism, and inhibited growth at higher dose rates (≥20 mGy h−1). When co-exposed, UVB predominantly caused non-interaction (no-enhancement or additive) effects on γ-radiation-induced antioxidant gene expression, energy quenching in PSII and growth for all dose rates, whereas antagonistic effects were observed for lipid peroxidation, OXPHOS, PCD, oxidative stress, chlorophyll metabolism and genes involved in DNA damage responses. Synergistic effects were observed for changes in photochemical quenching and non-photochemical quenching, and up-regulation of antioxidant enzyme genes (GST) at one or more dose rates, while synergistic reproductive inhibition occurred at all three γ-radiation dose rates. The present study provides mechanistic knowledge, quantitative understanding and novel analytical strategies to decipher combined effects across levels of biological organisation, which should facilitate future cumulative hazard assessments of multiple stressors.publishedVersio

    Thermoperiodic growth control by gibberellin does not involve changes in photosynthetic or respiratory capacities in pea

    Get PDF
    Active gibberellin (GA1) is an important mediator of thermoperiodic growth in pea. Plants grown under lower day than night temperature (negative DIF) elongate less and have reduced levels of GA1 compared with plants grown at higher day than night temperature (positive DIF). By comparing the wild type (WT) and the elongated DELLA mutant la crys, this study has examined the effect of impaired GA signalling on thermoperiodic growth, photosynthesis, and respiration in pea. In the WT a negative DIF treatment reduced stem mass ratio and increased both root mass ratio and leaf mass ratio (dry weight of specific tissue related to total plant dry weight). Leaf, root and stem mass ratios of la crys were not affected by DIF. Under negative DIF, specific leaf area (projected leaf area per unit leaf dry mass), biomass, and chlorophyll content of WT and la crys plants were reduced. Young, expanding leaves of plants grown under negative DIF had reduced leaf area-based photosynthetic capacity. However, the highest photosynthetic electron transport rate was found in fully expanded leaves of WT plants grown under negative DIF. Negative DIF increased night respiration and was similar for both genotypes. It is concluded that GA signalling is not a major determinant of leaf area-based photosynthesis or respiration and that reduced dry weight of plants grown under negative DIF is caused by a GA-mediated reduction of photosynthetic stem and leaf tissue, reduced photosynthesis of young, expanding leaves, and reduced growth caused by low temperature in the photoperiod

    Functional growth analysis of ‘Sonata’ strawberry plants grown under controlled temperature and daylength conditions

    Get PDF
    In order to investigate the relationship between environmental conditions and vegetative growth and reproductive development in the strawberry, freshly rooted runner plants of the cultivar ‘Sonata’ were grown in a phytotron at temperatures of 12, 18 and 24 °C and photoperiods of 10 h short day (SD) and 20 h long day (LD) for 31 d and harvested at 10 d intervals. Plant dry weight and leaf area increases were exponential versus time, giving a linear regression with the natural log (ln). This rendered the relative growth rate (RGR) constant over time at each environmental condition. Over the entire 31 d growth period, the RGR increased linearly with increasing temperature across the range of temperatures with a further 10–13% enhancement by LD. A maximum RGR value of 0.077 g/g/d was determined in LD at 24 °C. Increases in the RGR was driven by a combined increase in net assimilation rate (NAR) and leaf area ratio (LAR) and was associated with an increased allocation of dry matter production into leaves and less into crowns and roots. Because of this, the shoot/root ratio increased consistently with increasing temperature and photoperiod, which was also associated with a significant increase in the tissue C/N concentration ratio. Low temperature promoted starch accumulation markedly in all parts of the plants, with a further enhancement by LD conditions, while the concentrations of soluble sugars were less affected by the climatic environment. Forcing of plants exposed to the various growth conditions for 31 d showed that all plants at 12 and 18 °C and 80% of those at 24 °C had initiated flowers in SD, whereas none had initiated flowers in LD regardless of temperature conditions. All these results demonstrate an opposite environmental relationship between vegetative growth and reproductive development in the strawberry.acceptedVersio

    Kairomone-assisted trap cropping for protecting spring oilseed rape (<i>Brassica napus</i>) from pollen beetles (Coleoptera: Nitidulidae)

    Get PDF
    BACKGROUND Pollen beetles are key pests in oilseed rape (OSR) production. These beetles use visual and olfactory cues to locate their host plants at specific phenological stages, hence trap cropping may represent an alternative pest control strategy. In this study, a trap crop strategy for spring OSR was developed. To elaborate such a trap cropping system, a pest control measure that eradicates the attracted beetles in the trap crop before they migrate further into the main crop was included in the final trap cropping strategy. RESULTS Testing yellow‐flowering turnip rape and one yellow‐ and two cream‐coloured flowering OSR cultivars as potential crops in different trap cropping strategies, we found that pollen beetles clearly preferred turnip rape over the cream‐coloured and yellow OSR cultivars, and preferred the yellow OSR cultivar over the two cream‐coloured cultivars. This behaviour was related to the plant growth stage and associated volatile and colour signals of the tested cultivars. Using turnip rape as a trap crop and testing kairomone‐ or insecticide‐assisted trap cropping as the pest control strategy was as effective as compared with whole fields treated with a standard pesticide. CONCLUSION Combining a turnip rape cultivar as trap crop with kairomone traps placed in the trap crop as a killing agent may enable renunciation of pesticides in spring OSR production. © 2020 Society of Chemical IndustrypublishedVersio

    Phototactic response of Frankliniella occidentalis to sticky traps with blue light emitting diodes in herb and Alstroemeria greenhouses

    Get PDF
    Blue and yellow sticky traps equipped with blue light emitting diodes (LEDs) were evaluated for their attractiveness to the western flower thrips (Frankliniella occidentalis Pergande) and compared to similar traps without light in two greenhouses with commercial production of either mixed herbs or Alstroemeria cut flowers. Blue traps were more attractive to F. occidentalis than the yellow traps in both crops, regardless of whether they were equipped with light or not. In herbs, the blue light equipped traps caught 1.7 to 2.5 times more thrips compared to blue traps without light, and 1.7 to 3.0 times more thrips than yellow traps with light. Blue light on both blue and yellow traps increased thrips catches in one out of two experiments in Alstroemeria. The blue light equipped traps caught 3.4 and 4.0 times more thrips than blue traps without light in coloured and white Alstroemeria cultivars, respectively, whereas yellow light equipped traps increased thrips catches 4.5 times compared to yellow traps without light in both coloured and white cultivars. The yellow light equipped traps caught, however, only equal to or only slightly more thrips than blue traps without light, and caught fewer thrips than the light equipped blue traps. The relative trapping efficiency of the different combinations of trap colour and light varied with experiment, crop and Alstroemeria cultivars. This suggests that factors other than merely the addition of light influenced the thrips' phototactic response to the traps. Such factors could be differences in the relative strength of the competition between attractive signals from traps and plants between the two crops and Alstroemeria cultivars, thrips density, seasonal lighting conditions or different pest management strategies and other operational procedures in the greenhouses. The light from the traps did not increase the thrips population on the plants below the traps. The implications of the results for thrips control and suggestions for further studies are discussed.Phototactic response of Frankliniella occidentalis to sticky traps with blue light emitting diodes in herb and Alstroemeria greenhousesacceptedVersio

    Linking mode of action of the model respiratory and photosynthesis uncoupler 3,5-dichlorophenol to adverse outcomes in Lemna minor

    Get PDF
    Embargo until 10 February 2020.Standard chemical toxicity testing guidelines using aquatic plant Lemna minor have been developed by several international standardisation organisations. Although being highly useful for regulatory purposes by focusing on traditional adverse endpoints, these tests provide limited information about the toxic mechanisms and modes of action (MoA). The present study aimed to use selected functional assays in L. minor after exposure to 3,5-dichlorophenol (3,5-DCP) as a model to characterise the toxic mechanisms causing growth inhibition and lethality in primary producers. The results demonstrated that 3,5-DCP caused concentration-dependent effects in chloroplasts and mitochondria. Uncoupling of oxidative phosphorylation (OXPHOS), reduction in chlorophyll (Chlorophyll a and b) content, reproduction rate and frond size were the most sensitive endpoints, followed by formation of reactive oxygen species (ROS), lipid peroxidation (LPO), reduction of carotenoid content and impairment of photosynthesis efficiency. Suppression of photosystem II (PSII) efficiency, electron transport rate (ETR), chlorophyll (a and b) contents and oxidative phosphorylation (OXPHOS) were closely correlated while ROS production and LPO were negative correlated with ETR, carotenoid content and growth parameters. A network of conceptual Adverse Outcome Pathways (AOPs) was developed to decipher the causal relationships between molecular, cellular, and apical adverse effects occurring in L. minor to form a basis for future studies with similar compounds.acceptedVersio

    Forest edge-induced damage of cephalo- and cyanolichens in northern temperate rainforests of British Columbia

    No full text
    Retention of trees after logging is a method of preserving epiphytic lichens; however, epiphytes’ responses to logging disturbance are insufficiently known. We aimed to characterize four viability measures - effective PSII yield (ΦPSII; a proxy for photosynthesis), maximal photosystem II efficiency (FV/FM; a proxy for photoinhibition), chlorophyll a content, chlorophyll a/b-ratio, - and the functional parameter specific thallus mass (STM; a proxy for water storage) in sympatric populations of two old-growth lichens (Lobaria retigera, L. oregana) and the less old-growth dependent L. pulmonaria along recently-logged forest edge gradients of retained forest patches. All species experienced substantially reduced chlorophyll contents near edges, whereas ΦPSII was lower in the two old-growth lichens than in L. pulmonaria. STM, and thus lichen water storage, did not respond to logging, probably because chlorophyll degradation reduced the carbon-gain required for necessary acclimation. Reported edge effects on lichen viability were so strong that the epiphytic lichens in most of the retained forest patches were affected. Measured viability variables improved linearly with distances up to ≈120 m from the edge. To avoid logging-induced adverse impacts on the threatened epiphytic lichens of these old-growth rainforests, there is a need to retain forest patches wider than 240 m.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Hot water and cutting for control of Impatiens glandulifera

    Get PDF
    Ornamental jewelweed (Impatiens glandulifera Royle) is an alien invasive plant in Europe. This annual plant often grows in riparian habitats where herbicides are prohibited. Several studies have reported the negative effect on ecosystem and ecosystem services by this species. However, limited research is published on control measures and the aim of our study was to explore use of hot water and cutting to control I. glandulifera. A lab experiment showed that the lethal water temperature for seed was between 45 and 50 C. In a pot experiment with seeds in soil, emergence of I. glandulifera was reduced by 78% and 93% compared with the untreated control with volumes of hot water (80 C) of 7.2 and 14.5 L m−2, respectively. When treatments were conducted on relatively tall plants (almost 60 cm) in late June, hot water gave significantly better control than cutting. Compared with an untreated control, I. glandulifera cover was reduced by 97% and 79% after hot water and cutting, respectively. Application of hot water to smaller (<40 cm) and less developed plants (BBCH 12–13) in early June and cutting of plants with visible flower buds (mid-July) led to no significant difference in cover. Compared with an untreated control, I. glandulifera cover was reduced by 99% (cut below first node) and 91% (hot water and cut above first node). When relatively tall plants (almost 60 cm) were treated, hot water use was high (31.1 L m−2) and required twice as many work hours (4.8 min m−2) as cutting (2.4 min m−2). When smaller plants (<40 cm) were targeted, work hours and hot water use were reduced to 2.1 min m−2 and 13.7 L m−2, respectively.publishedVersio
    corecore