3,925 research outputs found

    Magnetization reversal and local switching fields of ferromagnetic Co/Pd microtubes with radial magnetization

    Get PDF
    Three-dimensional nanomagnetism is a rapidly growing field of research covering both noncollinear spin textures and curved magnetic geometries including microtubular structures. We spatially resolve the field-induced magnetization reversal of free-standing ferromagnetic microtubes utilizing multifrequency magnetic force microscopy (MFM). The microtubes are composed of Co/Pd multilayer films with perpendicular magnetic anisotropy that translates to an anisotropy with radial easy axis upon rolling-up. Simultaneously mapping the topography and the perpendicular magnetostatic force derivative, the relation between surface angle and local magnetization configuration is evaluated for a large number of locations with slopes exceeding 45 degrees. The angle-dependence of the switching field is concurrent with the Kondorsky model, i.e., the rolled-up nanomembrane behaves like a planar magnetic film with perpendicular anisotropy and a pinning dominated magnetization reversal. Additionally, we discuss methodological challenges when detecting magnetostatic force derivatives near steep surfaces

    Molecular remodeling of ion channels, exchangers and pumps in atrial and ventricular myocytes in ischemic cardiomyopathy

    Get PDF
    Existing molecular knowledge base of cardiovascular diseases is rudimentary because of lack of specific attribution to cell type and function. The aim of this study was to investigate cell-specific molecular remodeling in human atrial and ventricular myocytes associated with ischemic cardiomyopathy. Our strategy combines two technological innovations, laser-capture microdissection of identified cardiac cells in selected anatomical regions of the heart and splice microarray of a narrow catalog of the functionally most important genes regulating ion homeostasis. We focused on expression of a principal family of genes coding for ion channels, exchangers and pumps (CE&P genes) that are involved in electrical, mechanical and signaling functions of the heart and constitute the most utilized drug targets. We found that (1) CE&P genes remodel in a cell-specific manner: ischemic cardiomyopathy affected 63 CE&P genes in ventricular myocytes and 12 essentially different genes in atrial myocytes. (2) Only few of the identified CE&P genes were previously linked to human cardiac disfunctions. (3) The ischemia-affected CE&P genes include nuclear chloride channels, adrenoceptors, cyclic nucleotide-gated channels, auxiliary subunits of Na(+), K(+) and Ca(2+) channels, and cell-surface CE&Ps. (4) In both atrial and ventricular myocytes ischemic cardiomyopathy reduced expression of CACNG7 and induced overexpression of FXYD1, the gene crucial for Na(+) and K(+) homeostasis. Thus, our cell-specific molecular profiling defined new landmarks for correct molecular modeling of ischemic cardiomyopathy and development of underlying targeted therapies

    Selective sensitivity in Kerr microscopy

    Full text link
    A new technique for contrast separation in wide-field magneto-optical Kerr microscopy is introduced. Utilizing the light from eight light emitting diodes, guided to the microscope by glass fibers and being switched synchronously with the camera exposure, domain images with orthogonal in-plane sensitivity can be displayed simultaneously at real-time, and images with pure in-plane or polar contrast can be obtained. The benefit of this new method of contrast separation is demonstrated for Permalloy films, a NdFeB sinter magnet, and a cobalt crystal. Moreover, the new technique is shown to strongly enhance the sensitivity of Kerr microscopy by eliminating parasitic contrast contributions occurring in conventional setups. A doubling of the in-plane domain contrast and a sensitivity to Kerr rotations as low as 0.6 mdeg is demonstrated. © 2017 Author(s)

    Shuttle Mechanism for Charge Transfer in Coulomb Blockade Nanostructures

    Full text link
    Room-temperature Coulomb blockade of charge transport through composite nanostructures containing organic inter-links has recently been observed. A pronounced charging effect in combination with the softness of the molecular links implies that charge transfer gives rise to a significant deformation of these structures. For a simple model system containing one nanoscale metallic cluster connected by molecular links to two bulk metallic electrodes we show that self-excitation of periodic cluster oscillations in conjunction with sequential processes of cluster charging and decharging appears for a sufficiently large bias voltage. This new `electron shuttle' mechanism of discrete charge transfer gives rise to a current through the nanostructure, which is proportional to the cluster vibration frequency.Comment: 4 pages, 4 figure

    Incoherent dynamics of vibrating single-molecule transistors

    Get PDF
    We study the tunneling conductance of nano-scale quantum ``shuttles'' in connection with a recent experiment (H. Park et al., Nature, 407, 57 (2000)) in which a vibrating C^60 molecule was apparently functioning as the island of a single electron transistor (SET). While our calculation starts from the same model of previous work (D. Boese and H. Schoeller, Europhys. Lett. 54, 66(2001)) we obtain quantitatively different dynamics. Calculated I-V curves exhibit most features present in experimental data with a physically reasonable parameter set, and point to a strong dependence of the oscillator's potential on the electrostatics of the island region. We propose that in a regime where the electric field due to the bias voltage itself affects island position, a "catastrophic" negative differential conductance (NDC) may be realized. This effect is directly attributable to the magnitude of overlap of final and initial quantum oscillator states, and as such represents experimental control over quantum transitions of the oscillator via the macroscopically controllable bias voltage.Comment: 6 pages, LaTex, 6 figure

    Gate-Voltage Studies of Discrete Electronic States in Al Nanoparticles

    Full text link
    We have investigated the spectrum of discrete electronic states in single, nm-scale Al particles incorporated into new tunneling transistors, complete with a gate electrode. The addition of the gate has allowed (a) measurements of the electronic spectra for different numbers of electrons in the same particle, (b) greatly improved resolution and qualitatively new results for spectra within superconducting particles, and (c) detailed studies of the gate-voltage dependence of the resonance level widths, which have directly demonstrated the effects of non-equilibrium excitations.Comment: 4 pages, 7 figure
    corecore