9,024 research outputs found

    Noise-Free Measurement of Harmonic Oscillators with Instantaneous Interactions

    Full text link
    We present a method of measuring the quantum state of a harmonic oscillator through instantaneous probe-system selective interactions of the Jaynes-Cummings type. We prove that this scheme is robust to general decoherence mechanisms, allowing the possibility of measuring fast-decaying systems in the weak-coupling regime. This method could be applied to different setups: motional states of trapped ions, microwave fields in cavity/circuit QED, and even intra-cavity optical fields.Comment: 4 pages, no figure, published in Physical Review Letter

    Comment on "Topological stability of the half-vortices in spinor exciton-polariton condensates"

    Full text link
    We show that recent paper by Flayac et al. [Phys. Rev. B 81, 045318 (2010) and arXiv:0911.1650] is misleading. We demonstrate the existence of static half-quantum vortices in exciton-polariton condensates and calculate the warping of their polarization texture produced by TE-TM splitting of polariton band.Comment: 4 pages, 1 figure. More material was added (in particular, on the current flow)

    Vortices in exciton-polariton condensates with polarization splitting

    Full text link
    The presence of polarization splitting of exciton-polariton branches in planar semiconductor microcavities has a pronounced effect on vortices in polariton condensates. We show that the TE-TM splitting leads to the coupling between the left and right half-vortices (vortices in the right and left circular components of the condensate), that otherwise do not interact. We analyze also the effect of linear polarization pinning resulted from a fixed splitting between two perpendicular linear polarizations. In this case, half-vortices acquire strings (solitons) attached to them. The half-vortices with strings can be detected by observing the interference fringes of light emitted from the cavity in two circular polarizations. The string affects the fringes in both polarizations. Namely, the half-vortex is characterized by an asymmetric fork-like dislocation in one circular polarization; the fringes in the other circular polarization are continuous, but they are shifted by crossing the string.Comment: 4 pages, 2 figs, Optics of Excitons in Confined Systems 11 (Madrid, 7-11 september 2009

    Dynamical Casimir effect entangles artificial atoms

    Get PDF
    We show that the physics underlying the dynamical Casimir effect may generate multipartite quantum correlations. To achieve it, we propose a circuit quantum electrodynamics (cQED) scenario involving superconducting quantum interference devices (SQUIDs), cavities, and superconducting qubits, also called artificial atoms. Our results predict the generation of highly entangled states for two and three superconducting qubits in different geometric configurations with realistic parameters. This proposal paves the way for a scalable method of multipartite entanglement generation in cavity networks through dynamical Casimir physics.Comment: Improved version and references added. Accepted for publication in Physical Review Letter

    IGR J19294+1816: a new Be-X ray binary revealed through infrared spectroscopy

    Get PDF
    The aim of this work is to characterize the counterpart to the INTEGRAL High Mass X-ray Binary candidate IGR J19294+1816 so as to establish its true nature. We obtained H band spectra of the selected counterpart acquired with the NICS instrument mounted on the Telescopio Nazionale Galileo (TNG) 3.5-m telescope which represents the first infrared spectrum ever taken of this source. We complement the spectral analysis with infrared photometry from UKIDSS, 2MASS, WISE and NEOWISE databases. We classify the mass donor as a Be star. Subsequently, we compute its distance by properly taking into account the contamination produced by the circumstellar envelope. The findings indicate that IGR J19294+1816 is a transient source with a B1Ve donor at a distance of d=11±1d = 11 \pm 1 kpc, and luminosities of the order of 10363710^{36-37} erg s1^{-1}, displaying the typical behaviour of a Be X-ray binary.Comment: 8 pages, 6 figures, accepted to be published in MNRA

    The quantum Rabi model in a superfluid Bose-Einstein condensate

    Full text link
    We propose a quantum simulation of the quantum Rabi model in an atomic quantum dot, which is a single atom in a tight optical trap coupled to the quasiparticle modes of a superfluid Bose-Einstein condensate. This widely tunable setup allows to simulate the ultrastrong coupling regime of light-matter interaction in a system which enjoys an amenable characteristic timescale, paving the way for an experimental analysis of the transition between the Jaynes-Cummings and the quantum Rabi dynamics using cold-atom systems. Our scheme can be naturally extended to simulate multi-qubit quantum Rabi models. In particular, we discuss the appearance of effective two-qubit interactions due to phononic exchange, among other features.Comment: Improved version and references adde

    Ensemble Quantum Computation with atoms in periodic potentials

    Full text link
    We show how to perform universal quantum computation with atoms confined in optical lattices which works both in the presence of defects and without individual addressing. The method is based on using the defects in the lattice, wherever they are, both to ``mark'' different copies on which ensemble quantum computation is carried out and to define pointer atoms which perform the quantum gates. We also show how to overcome the problem of scalability on this system

    Quantum computation with trapped ions in an optical cavity

    Full text link
    Two-qubit logical gates are proposed on the basis of two atoms trapped in a cavity setup. Losses in the interaction by spontaneous transitions are efficiently suppressed by employing adiabatic transitions and the Zeno effect. Dynamical and geometrical conditional phase gates are suggested. This method provides fidelity and a success rate of its gates very close to unity. Hence, it is suitable for performing quantum computation.Comment: 4 pages, 5 figures, REVTEX, second part modified, typos correcte
    corecore