1,574 research outputs found

    Fluxtube model atmospheres and Stokes V zero-crossing wavelengths

    Get PDF
    First results of the inversion of Stokes I and V profiles from plage regions near disk center are presented. Both low and high spatial resolution spectra of FeI 6301.5 and FeI 6302.5 A obtained with the Advanced Stokes Polarimeter (ASP) have been considered for analysis. The thin flux tube approximation, implemented in an LTE inversion code based on response functions, is used to describe unresolved magnetic elements. The code allows the simultaneous and consistent inference of all atmospheric quantities determining the radiative transfer with the sole assumption of hydrostatic equilibrium. By considering velocity gradients within the tubes we are able to match the full ASP Stokes profiles. The magnetic atmospheres derived from the inversion are characterized by the absence of significant motions in high layers and strong velocity gradients in deeper layers. These are essential to reproduce the asymmetries of the observed profiles. Our scenario predicts a shift of the Stokes V zero-crossing wavelengths which is indeed present in observations made with the Fourier Transform Spectrometer.Comment: To appear in ApJ Letters (1997) (in press

    Simulations Show that Vortex Flows could Heat the Chromosphere in Solar Plage

    Full text link
    The relationship between vortex flows at different spatial scales and their contribution to the energy balance in the chromosphere is not yet fully understood. We perform three-dimensional (3D) radiation-magnetohydrodynamic (MHD) simulations of a unipolar solar plage region at a spatial resolution of 10 km using the MURaM code. We use the swirling-strength criterion that mainly detects the smallest vortices present in the simulation data. We additionally degrade our simulation data to smooth-out the smaller vortices, so that also the vortices at larger spatial scales can be detected. Vortex flows at various spatial scales are found in our simulation data for different effective spatial resolutions. We conclude that the observed large vortices are likely clusters of much smaller ones that are not yet resolved by observations. We show that the vertical Poynting flux decreases rapidly with reduced effective spatial resolutions and is predominantly carried by the horizontal plasma motions rather than vertical flows. Since the small-scale horizontal motions or the smaller vortices carry most of the energy, the energy transported by vortices deduced from low resolution data is grossly underestimated. In full resolution simulation data, the Poynting flux contribution due to vortices is more than adequate to compensate for the radiative losses in plage, indicating their importance for chromospheric heating.Comment: 8 pages, 5 figures, accepted in ApJ

    Waves as the source of apparent twisting motions in sunspot penumbrae

    Full text link
    The motion of dark striations across bright filaments in a sunspot penumbra has become an important new diagnostic of convective gas flows in penumbral filaments. The nature of these striations has, however, remained unclear. Here we present an analysis of small scale motions in penumbral filaments in both simulations and observations. The simulations, when viewed from above, show fine structure with dark lanes running outwards from the dark core of the penumbral filaments. The dark lanes either occur preferentially on one side or alternate between both sides of the filament. We identify this fine structure with transverse (kink) oscillations of the filament, corresponding to a sideways swaying of the filament. These oscillations have periods in the range of 5-7 min and propagate outward and downward along the filament. Similar features are found in observed G-band intensity time series of penumbral filaments in a sunspot located near disk center obtained by the Broadband Filter Imager (BFI) on board {\it Hinode}. We also find that some filaments show dark striations moving to both sides of the filaments. Based on the agreement between simulations and observations we conclude that the motions of these striations are caused by transverse oscillations of the underlying bright filaments.Comment: Accepted for publication in Astrophysical Journal on 8th April 201

    Spectroscopic Observations of Propagating Disturbances in a Polar Coronal Hole: Evidence of Slow Magneto-acoustic Waves

    Full text link
    We focus on detecting and studying quasi-periodic propagating features that have been interpreted both in terms of slow magneto-acoustic waves and of high speed upflows. We analyze long duration spectroscopic observations of the on-disk part of the south polar coronal hole taken on 1997 February 25 by the SUMER spectrometer aboard SOHO. We calibrated the velocity with respect to the off-limb region and obtain time--distance maps in intensity, Doppler velocity and line width. We also perform a cross correlation analysis on different time series curves at different latitudes. We study average spectral line profiles at the roots of propagating disturbances and along the propagating ridges, and perform a red-blue asymmetry analysis. We find the clear presence of propagating disturbances in intensity and Doppler velocity with a projected propagation speed of about 60±4.860\pm 4.8 km s−1^{-1} and a periodicity of ≈\approx14.5 min. To our knowledge, this is the first simultaneous detection of propagating disturbances in intensity as well as in Doppler velocity in a coronal hole. During the propagation, an intensity enhancement is associated with a blue-shifted Doppler velocity. These disturbances are clearly seen in intensity also at higher latitudes (i.e. closer to the limb), while disturbances in Doppler velocity becomes faint there. The spectral line profiles averaged along the propagating ridges are found to be symmetric, to be well fitted by a single Gaussian, and have no noticeable red-blue asymmetry. Based on our analysis, we interpret these disturbances in terms of propagating slow magneto-acoustic waves.Comment: accepted for publication by A&

    Discovery of kilogauss magnetic fields in three DA white dwarfs

    Get PDF
    We have detected longitudinal magnetic fields between 2 and 4 kG in three (WD 0446−-790, WD 1105−-048, WD 2359−-434) out of a sample of 12 normal DA white dwarfs by using optical spectropolarimetry done with the VLT Antu 8 m telescope equipped with FORS1. With the exception of 40 Eri B (4 kG) these are the first positive detections of magnetic fields in white dwarfs below 30 kG. Although suspected, it was not clear whether a significant fraction of white dwarfs contain magnetic fields at this level. These fields may be explained as fossil relics from magnetic fields in the main-sequence progenitors considerably enhanced by magnetic flux conservation during the shrinkage of the core. A detection rate of 25 % (3/12) may indicate now for the first time that a substantial fraction of white dwarfs have a weak magnetic field. This result, if confirmed by future observations, would form a cornerstone for our understanding on the evolution of stellar magnetic fields. Keywords: stars: white dwarfs - stars: magnetic fields - stars: individual: WD0446-790, WD1105-048, WD2359-434Comment: 15 pages, 7 figures, Astronomy and Astrophysics, in pres

    The role of the Fraunhofer lines in solar brightness variability

    Full text link
    The solar brightness varies on timescales from minutes to decades. A clear identification of the physical processes behind such variations is needed for developing and improving physics-based models of solar brightness variability and reconstructing solar brightness in the past. This is, in turn, important for better understanding the solar-terrestrial and solar-stellar connections. We estimate the relative contributions of the continuum, molecular, and atomic lines to the solar brightness variations on different timescales. Our approach is based on the assumption that variability of the solar brightness on timescales greater than a day is driven by the evolution of the solar surface magnetic field. We calculated the solar brightness variations employing the solar disc area coverage of magnetic features deduced from the MDI/SOHO observations. The brightness contrasts of magnetic features relative to the quiet Sun were calculated with a non-LTE radiative transfer code as functions of disc position and wavelength. By consecutive elimination of molecular and atomic lines from the radiative transfer calculations, we assessed the role of these lines in producing solar brightness variability. We show that the variations in Fraunhofer lines define the amplitude of the solar brightness variability on timescales greater than a day and even the phase of the total solar irradiance variability over the 11-year cycle. We also demonstrate that molecular lines make substantial contribution to solar brightness variability on the 11-year activity cycle and centennial timescales. In particular, our model indicates that roughly a quarter of the total solar irradiance variability over the 11-year cycle originates in molecular lines. The maximum of the absolute spectral brightness variability on timescales greater than a day is associated with the CN violet system between 380 and 390 nm.Comment: 9 pages, 4 figures, accepted for publication in Astronomy&Astrophysic

    Edible fish powder from Dhoma (Sciaenids spp.)

    Get PDF
    Edible fish powder of high protein content was prepared from Dhoma (Sciaenids) using different methods. A comparative account of the yield and quality of the products prepared by these methods is presented

    High-frequency Oscillations in Small Magnetic Elements Observed with Sunrise/SuFI

    Full text link
    We characterize waves in small magnetic elements and investigate their propagation in the lower solar atmosphere from observations at high spatial and temporal resolution. We use the wavelet transform to analyze oscillations of both horizontal displacement and intensity in magnetic bright points found in the 300 nm and the Ca II H 396.8 nm passbands of the filter imager on board the Sunrise balloon-borne solar observatory. Phase differences between the oscillations at the two atmospheric layers corresponding to the two passbands reveal upward propagating waves at high frequencies (up to 30 mHz). Weak signatures of standing as well as downward propagating waves are also obtained. Both compressible and incompressible (kink) waves are found in the small-scale magnetic features. The two types of waves have different, though overlapping, period distributions. Two independent estimates give a height difference of approximately 450+-100 km between the two atmospheric layers sampled by the employed spectral bands. This value, together with the determined short travel times of the transverse and longitudinal waves provide us with phase speeds of 29+-2 km/s and 31+-2 km/s, respectively. We speculate that these phase speeds may not reflect the true propagation speeds of the waves. Thus, effects such as the refraction of fast longitudinal waves may contribute to an overestimate of the phase speed.Comment: 14 pages, 7 figure

    The nature of solar brightness variations

    Full text link
    The solar brightness varies on timescales from minutes to decades. Determining the sources of such variations, often referred to as solar noise, is of importance for multiple reasons: a) it is the background that limits the detection of solar oscillations, b) variability in solar brightness is one of the drivers of the Earth's climate system, c) it is a prototype of stellar variability which is an important limiting factor for the detection of extra-solar planets. Here we show that recent progress in simulations and observations of the Sun makes it finally possible to pinpoint the source of the solar noise. We utilise high-cadence observations from the Solar Dynamic Observatory and the SATIRE model to calculate the magnetically-driven variations of solar brightness. The brightness variations caused by the constantly evolving cellular granulation pattern on the solar surface are computed with the MURAM code. We find that surface magnetic field and granulation can together precisely explain solar noise on timescales from minutes to decades, i.e. ranging over more than six orders of magnitude in the period. This accounts for all timescales that have so far been resolved or covered by irradiance measurements. We demonstrate that no other sources of variability are required to explain the data. Recent measurements of Sun-like stars by CoRoT and Kepler uncovered brightness variations similar to that of the Sun but with much wider variety of patterns. Our finding that solar brightness variations can be replicated in detail with just two well-known sources will greatly simplify future modelling of existing CoRoT and Kepler as well as anticipated TESS and PLATO data.Comment: This is the submitted version of the paper published in Nature Astronom
    • 

    corecore