1,574 research outputs found
Fluxtube model atmospheres and Stokes V zero-crossing wavelengths
First results of the inversion of Stokes I and V profiles from plage regions
near disk center are presented. Both low and high spatial resolution spectra of
FeI 6301.5 and FeI 6302.5 A obtained with the Advanced Stokes Polarimeter (ASP)
have been considered for analysis. The thin flux tube approximation,
implemented in an LTE inversion code based on response functions, is used to
describe unresolved magnetic elements. The code allows the simultaneous and
consistent inference of all atmospheric quantities determining the radiative
transfer with the sole assumption of hydrostatic equilibrium. By considering
velocity gradients within the tubes we are able to match the full ASP Stokes
profiles. The magnetic atmospheres derived from the inversion are characterized
by the absence of significant motions in high layers and strong velocity
gradients in deeper layers. These are essential to reproduce the asymmetries of
the observed profiles. Our scenario predicts a shift of the Stokes V
zero-crossing wavelengths which is indeed present in observations made with the
Fourier Transform Spectrometer.Comment: To appear in ApJ Letters (1997) (in press
Simulations Show that Vortex Flows could Heat the Chromosphere in Solar Plage
The relationship between vortex flows at different spatial scales and their
contribution to the energy balance in the chromosphere is not yet fully
understood. We perform three-dimensional (3D) radiation-magnetohydrodynamic
(MHD) simulations of a unipolar solar plage region at a spatial resolution of
10 km using the MURaM code. We use the swirling-strength criterion that mainly
detects the smallest vortices present in the simulation data. We additionally
degrade our simulation data to smooth-out the smaller vortices, so that also
the vortices at larger spatial scales can be detected. Vortex flows at various
spatial scales are found in our simulation data for different effective spatial
resolutions. We conclude that the observed large vortices are likely clusters
of much smaller ones that are not yet resolved by observations. We show that
the vertical Poynting flux decreases rapidly with reduced effective spatial
resolutions and is predominantly carried by the horizontal plasma motions
rather than vertical flows. Since the small-scale horizontal motions or the
smaller vortices carry most of the energy, the energy transported by vortices
deduced from low resolution data is grossly underestimated. In full resolution
simulation data, the Poynting flux contribution due to vortices is more than
adequate to compensate for the radiative losses in plage, indicating their
importance for chromospheric heating.Comment: 8 pages, 5 figures, accepted in ApJ
Waves as the source of apparent twisting motions in sunspot penumbrae
The motion of dark striations across bright filaments in a sunspot penumbra
has become an important new diagnostic of convective gas flows in penumbral
filaments. The nature of these striations has, however, remained unclear. Here
we present an analysis of small scale motions in penumbral filaments in both
simulations and observations. The simulations, when viewed from above, show
fine structure with dark lanes running outwards from the dark core of the
penumbral filaments. The dark lanes either occur preferentially on one side or
alternate between both sides of the filament. We identify this fine structure
with transverse (kink) oscillations of the filament, corresponding to a
sideways swaying of the filament. These oscillations have periods in the range
of 5-7 min and propagate outward and downward along the filament. Similar
features are found in observed G-band intensity time series of penumbral
filaments in a sunspot located near disk center obtained by the Broadband
Filter Imager (BFI) on board {\it Hinode}. We also find that some filaments
show dark striations moving to both sides of the filaments. Based on the
agreement between simulations and observations we conclude that the motions of
these striations are caused by transverse oscillations of the underlying bright
filaments.Comment: Accepted for publication in Astrophysical Journal on 8th April 201
Spectroscopic Observations of Propagating Disturbances in a Polar Coronal Hole: Evidence of Slow Magneto-acoustic Waves
We focus on detecting and studying quasi-periodic propagating features that
have been interpreted both in terms of slow magneto-acoustic waves and of high
speed upflows. We analyze long duration spectroscopic observations of the
on-disk part of the south polar coronal hole taken on 1997 February 25 by the
SUMER spectrometer aboard SOHO. We calibrated the velocity with respect to the
off-limb region and obtain time--distance maps in intensity, Doppler velocity
and line width. We also perform a cross correlation analysis on different time
series curves at different latitudes. We study average spectral line profiles
at the roots of propagating disturbances and along the propagating ridges, and
perform a red-blue asymmetry analysis. We find the clear presence of
propagating disturbances in intensity and Doppler velocity with a projected
propagation speed of about km s and a periodicity of
14.5 min. To our knowledge, this is the first simultaneous detection
of propagating disturbances in intensity as well as in Doppler velocity in a
coronal hole. During the propagation, an intensity enhancement is associated
with a blue-shifted Doppler velocity. These disturbances are clearly seen in
intensity also at higher latitudes (i.e. closer to the limb), while
disturbances in Doppler velocity becomes faint there. The spectral line
profiles averaged along the propagating ridges are found to be symmetric, to be
well fitted by a single Gaussian, and have no noticeable red-blue asymmetry.
Based on our analysis, we interpret these disturbances in terms of propagating
slow magneto-acoustic waves.Comment: accepted for publication by A&
Discovery of kilogauss magnetic fields in three DA white dwarfs
We have detected longitudinal magnetic fields between 2 and 4 kG in three (WD
0446790, WD 1105048, WD 2359434) out of a sample of 12 normal DA white
dwarfs by using optical spectropolarimetry done with the VLT Antu 8 m telescope
equipped with FORS1. With the exception of 40 Eri B (4 kG) these are the first
positive detections of magnetic fields in white dwarfs below 30 kG. Although
suspected, it was not clear whether a significant fraction of white dwarfs
contain magnetic fields at this level. These fields may be explained as fossil
relics from magnetic fields in the main-sequence progenitors considerably
enhanced by magnetic flux conservation during the shrinkage of the core. A
detection rate of 25 % (3/12) may indicate now for the first time that a
substantial fraction of white dwarfs have a weak magnetic field. This result,
if confirmed by future observations, would form a cornerstone for our
understanding on the evolution of stellar magnetic fields.
Keywords: stars: white dwarfs - stars: magnetic fields - stars: individual:
WD0446-790, WD1105-048, WD2359-434Comment: 15 pages, 7 figures, Astronomy and Astrophysics, in pres
The role of the Fraunhofer lines in solar brightness variability
The solar brightness varies on timescales from minutes to decades. A clear
identification of the physical processes behind such variations is needed for
developing and improving physics-based models of solar brightness variability
and reconstructing solar brightness in the past. This is, in turn, important
for better understanding the solar-terrestrial and solar-stellar connections.
We estimate the relative contributions of the continuum, molecular, and
atomic lines to the solar brightness variations on different timescales.
Our approach is based on the assumption that variability of the solar
brightness on timescales greater than a day is driven by the evolution of the
solar surface magnetic field. We calculated the solar brightness variations
employing the solar disc area coverage of magnetic features deduced from the
MDI/SOHO observations. The brightness contrasts of magnetic features relative
to the quiet Sun were calculated with a non-LTE radiative transfer code as
functions of disc position and wavelength. By consecutive elimination of
molecular and atomic lines from the radiative transfer calculations, we
assessed the role of these lines in producing solar brightness variability.
We show that the variations in Fraunhofer lines define the amplitude of the
solar brightness variability on timescales greater than a day and even the
phase of the total solar irradiance variability over the 11-year cycle. We also
demonstrate that molecular lines make substantial contribution to solar
brightness variability on the 11-year activity cycle and centennial timescales.
In particular, our model indicates that roughly a quarter of the total solar
irradiance variability over the 11-year cycle originates in molecular lines.
The maximum of the absolute spectral brightness variability on timescales
greater than a day is associated with the CN violet system between 380 and 390
nm.Comment: 9 pages, 4 figures, accepted for publication in
Astronomy&Astrophysic
Edible fish powder from Dhoma (Sciaenids spp.)
Edible fish powder of high protein content was prepared from Dhoma (Sciaenids) using different methods. A comparative account of the yield and quality of the products prepared by these methods is presented
High-frequency Oscillations in Small Magnetic Elements Observed with Sunrise/SuFI
We characterize waves in small magnetic elements and investigate their
propagation in the lower solar atmosphere from observations at high spatial and
temporal resolution. We use the wavelet transform to analyze oscillations of
both horizontal displacement and intensity in magnetic bright points found in
the 300 nm and the Ca II H 396.8 nm passbands of the filter imager on board the
Sunrise balloon-borne solar observatory. Phase differences between the
oscillations at the two atmospheric layers corresponding to the two passbands
reveal upward propagating waves at high frequencies (up to 30 mHz). Weak
signatures of standing as well as downward propagating waves are also obtained.
Both compressible and incompressible (kink) waves are found in the small-scale
magnetic features. The two types of waves have different, though overlapping,
period distributions. Two independent estimates give a height difference of
approximately 450+-100 km between the two atmospheric layers sampled by the
employed spectral bands. This value, together with the determined short travel
times of the transverse and longitudinal waves provide us with phase speeds of
29+-2 km/s and 31+-2 km/s, respectively. We speculate that these phase speeds
may not reflect the true propagation speeds of the waves. Thus, effects such as
the refraction of fast longitudinal waves may contribute to an overestimate of
the phase speed.Comment: 14 pages, 7 figure
The nature of solar brightness variations
The solar brightness varies on timescales from minutes to decades.
Determining the sources of such variations, often referred to as solar noise,
is of importance for multiple reasons: a) it is the background that limits the
detection of solar oscillations, b) variability in solar brightness is one of
the drivers of the Earth's climate system, c) it is a prototype of stellar
variability which is an important limiting factor for the detection of
extra-solar planets. Here we show that recent progress in simulations and
observations of the Sun makes it finally possible to pinpoint the source of the
solar noise. We utilise high-cadence observations from the Solar Dynamic
Observatory and the SATIRE model to calculate the magnetically-driven
variations of solar brightness. The brightness variations caused by the
constantly evolving cellular granulation pattern on the solar surface are
computed with the MURAM code. We find that surface magnetic field and
granulation can together precisely explain solar noise on timescales from
minutes to decades, i.e. ranging over more than six orders of magnitude in the
period. This accounts for all timescales that have so far been resolved or
covered by irradiance measurements. We demonstrate that no other sources of
variability are required to explain the data. Recent measurements of Sun-like
stars by CoRoT and Kepler uncovered brightness variations similar to that of
the Sun but with much wider variety of patterns. Our finding that solar
brightness variations can be replicated in detail with just two well-known
sources will greatly simplify future modelling of existing CoRoT and Kepler as
well as anticipated TESS and PLATO data.Comment: This is the submitted version of the paper published in Nature
Astronom
- âŠ