20 research outputs found

    GNIP1 E3 ubiquitin ligase is a novel player in regulating glycogen metabolism in skeletal muscle.

    Get PDF
    Background: Glycogenin-interacting protein 1 (GNIP1) is a tripartite motif (TRIM) protein with E3 ubiquitin ligase activity that interacts with glycogenin. These data suggest that GNIP1 could play a major role in the control of glycogen metabolism. However, direct evidence based on functional analysis remains to be obtained. Objectives: The aim of this study was 1) to define the expression pattern of glycogenin-interacting protein/ Tripartite motif containing protein 7 (GNIP/TRIM7) isoforms in humans, 2) to test their ubiquitin E3 ligase activity, and 3) to analyze the functional effects of GNIP1 on muscle glucose/glycogen metabolism both in human cultured cells and in vivo in mice. Results: We show that GNIP1 was the most abundant GNIP/TRIM7 isoform in human skeletal muscle, whereas in cardiac muscle only TRIM7 was expressed. GNIP1 and TRIM7 had autoubiquitination activity in vitro and were localized in the Golgi apparatus and cytosol respectively in LHCN-M2 myoblasts. GNIP1 overexpression increased glucose uptake in LHCN-M2 myotubes. Overexpression of GNIP1 in mouse muscle in vivo increased glycogen content, glycogen synthase (GS) activity and phospho-GSK-3α/β (Ser21/9) and phospho-Akt (Ser473) content, whereas decreased GS phosphorylation in Ser640. These modifications led to decreased blood glucose levels, lactate levels and body weight, without changing whole-body insulin or glucose tolerance in mouse. Conclusion: GNIP1 is an ubiquitin ligase with a markedly glycogenic effect in skeletal muscle

    TRIM17 and TRIM28 antagonistically regulate the ubiquitination and anti-apoptotic activity of BCL2A1

    Get PDF
    International audienceBCL2A1 is an anti-apoptotic member of the BCL-2 family that contributes to chemoresistance in a subset of tumors. BCL2A1 has a short half-life due to its constitutive processing by the ubiquitin-proteasome system. This constitutes a major tumor-suppressor mechanism regulating BCL2A1 function. However, the enzymes involved in the regulation of BCL2A1 protein stability are currently unknown. Here, we provide the first insight into the regulation of BCL2A1 ubiquitination. We present evidence that TRIM28 is an E3 ubiquitin-ligase for BCL2A1. Indeed, endogenous TRIM28 and BCL2A1 bind to each other at the mitochondria and TRIM28 knock-down decreases BCL2A1 ubiquitination. We also show that TRIM17 stabilizes BCL2A1 by blocking TRIM28 from binding and ubiquitinating BCL2A1, and that GSK3 is involved in the phosphorylation-mediated inhibition of BCL2A1 degradation. BCL2A1 and its close relative MCL1 are thus regulated by common factors but with opposite outcome. Finally, overexpression of TRIM28 or knock-out of TRIM17 reduced BCLA1 protein levels and restored sensitivity of melanoma cells to BRAF-targeted therapy. Therefore, our data describe a molecular rheostat in which two proteins of the TRIM family antagonistically regulate BCL2A1 stability and modulate cell death

    Regulation de l'apoptose par le systeme ubiquitine-protéasome

    No full text
    International audienc

    Cellular Function of TRIM E3 Ubiquitin Ligases in Health and Disease

    No full text
    The field of the Tripartite Motif (TRIM) family has progressively attracted increasing interest during the last two decades [...

    Executioners of Cell Death

    No full text
    TrendsTalkInternational audienc

    Mcl-1 Ubiquitination: Unique Regulation of an Essential Survival Protein

    Get PDF
    Mcl-1 is an anti-apoptotic protein of the Bcl-2 family that is essential for the survival of multiple cell lineages and that is highly amplified in human cancer. Under physiological conditions, Mcl-1 expression is tightly regulated at multiple levels, involving transcriptional, post-transcriptional and post-translational processes. Ubiquitination of Mcl-1, that targets it for proteasomal degradation, allows for rapid elimination of the protein and triggering of cell death, in response to various cellular events. In the last decade, a number of studies have elucidated different pathways controlling Mcl-1 ubiquitination and degradation. Four different E3 ubiquitin-ligases (e.g., Mule, SCFβ-TrCP, SCFFbw7 and Trim17) and one deubiquitinase (e.g., USP9X), that respectively mediate and oppose Mcl-1 ubiquitination, have been formerly identified. The interaction between Mule and Mcl-1 can be modulated by other Bcl-2 family proteins, while recognition of Mcl-1 by the other E3 ubiquitin-ligases and deubiquitinase is influenced by phosphorylation of specific residues in Mcl-1. The protein kinases and E3 ubiquitin-ligases that are involved in the regulation of Mcl-1 stability vary depending on the cellular context, highlighting the complexity and pivotal role of Mcl-1 regulation. In this review, we attempt to recapitulate progress in understanding Mcl-1 regulation by the ubiquitin-proteasome system

    NF-Y is essential for expression of the proapoptotic bim gene in sympathetic neurons

    No full text
    International audienceNeuronal apoptosis has a major role during development and aberrant apoptosis contributes to the pathology of certain neurological conditions. Studies with nerve growth factor (NGF)-dependent sympathetic neurons have provided important insights into the molecular mechanisms of neuronal apoptosis and the signalling pathways that regulate the cell death programme in neurons. The BH3-only protein Bim is a critical mediator of apoptosis in many cell types and in sympathetic neurons is required for NGF withdrawal-induced death. However, regulation of bim expression is complex and remains incompletely understood. We report that a conserved inverted CCAAT box (ICB) in the rat bim promoter is bound by the heterotrimeric transcription factor NF-Y. Interestingly, NF-Y is required for bim promoter activity and its induction following NGF withdrawal. We demonstrate that NF-Y activity is essential for endogenous Bim expression and contributes to NGF withdrawal-induced death. Furthermore, we find that the transcriptional coactivators CBP and p300 interact with NF-Y and FOXO3a and bind to this region of the bim promoter. The amount of CBP/p300 bound to bim increases after NGF deprivation and inhibition of CBP/p300 activity reduces bim induction. Our results indicate that NF-Y cooperates with FOXO3a to recruit CBP/p300 to the bim promoter to form a stable multi-protein/DNA complex that activates bim transcription after survival factor withdrawal
    corecore