241 research outputs found

    Analytical description of muon distributions at large depths

    Full text link
    The analytical expression for integral energy spectra and zenith angle distributions of atmospheric muons at large depths is derived. Fluctuations of muon energy losses are described using the parametrized correction factor. The fitting formula for the sea level muon spectrum at different zenith angles for spherical atmosphere is proposed. The concrete calculations for pure water are presented.Comment: Contribution to the 27th ICRC (Hamburg, August 7-15, 2001), 4 pages, 3 .eps figures, uses icrc.cl

    Precise parametrizations of muon energy losses in water

    Get PDF
    The description of muon propagation through large depths of matter, based on a concept of the correction factor, is proposed. The results of Monte-Carlo calculations of this correction factor are presented. The parametrizations for continuous energy loss coefficients, valid in the broad interval of muon energies, and for the correction factor are given. The concrete calculations for pure water are presented

    Astrophysical tau neutrinos and their detection by large neutrino telescopes

    Full text link
    We present results of the detailed Monte Carlo calculation of the rates of double-bang events in 1 km3^3 underwater neutrino telescope with taking into account the effects of τ\tau-neutrino propagation through the Earth. As an input, the moderately optimistic theoretical predictions for diffuse neutrino spectra of AGN jets are used.Comment: Talk given at the NANP'03 conference, June 2003. 4 pages, one eps figur

    ANIS: High Energy Neutrino Generator for Neutrino Telescopes

    Full text link
    We present the high-energy neutrino Monte Carlo event generator ANIS (All Neutrino Interaction Simulation). The program provides a detailed and flexible neutrino event simulation for high-energy neutrino detectors, such as AMANDA, ANTARES or ICECUBE. It generates neutrinos of any flavor according to a specified flux and propagates them through the Earth. In a final step neutrino interactions are simulated within a specified volume. All relevant standard model processes are implemented. We discuss strengths and limitations of the program.Comment: 15 pages, 4 figure

    Nernst-Planck-Poisson Model for the Description of Behaviour of Solid-Contact Ion-Selective Electrodes at Low Analyte Concentration

    Get PDF
    All-solid-state electrodes are increasingly being used in clinical, industrial and environmental analysis. This wide range of applications requires deep theoretical description of such electrodes. This work concentrates on the development of a numerical tool for the qualitative prediction of electrochemical behaviour for solid-contact ion-selective electrodes at low analyte concentrations. For this purpose, a general approach to the description of electro-diffusion processes, namely the Nernst-Planck-Poisson (NPP) model, was applied. The results obtained from this model are verified by experimental data of lead(II)-selective electrodes based on a polymeric PVC membrane with polybenzopyrene doped with Eriochrome Black T used as the solid contact
    corecore