66 research outputs found

    Adverse Health Effects of Chronic Exposure to Low-Level Cadmium in Foodstuffs and Cigarette Smoke

    Get PDF
    Cadmium is a cumulative nephrotoxicant that is absorbed into the body from dietary sources and cigarette smoking. The levels of Cd in organs such as liver and kidney cortex increase with age because of the lack of an active biochemical process for its elimination coupled with renal reabsorption. Recent research has provided evidence linking Cd-related kidney dysfunction and decreases in bone mineral density in nonoccupationally exposed populations who showed no signs of nutritional deficiency. This challenges the previous view that the concurrent kidney and bone damage seen in Japanese itai-itai disease patients was the result of Cd toxicity in combination with nutritional deficiencies, notably, of zinc and calcium. Further, such Cd-linked bone and kidney toxicities were observed in people whose dietary Cd intakes were well within the provisional tolerable weekly intake (PTWI) set by the Joint Food and Agriculture Organization/World Health Organization Expert Committee on Food Additives of 1 μg/kg body weight/day or 70 μg/day. This evidence points to the much-needed revision of the current PTWI for Cd. Also, evidence for the carcinogenic risk of chronic Cd exposure is accumulating and Cd effects on reproductive outcomes have begun to emerge

    The Validity of Benchmark Dose Limit Analysis for Estimating Permissible Accumulation of Cadmium

    Get PDF
    Cadmium (Cd) is a toxic metal pollutant that accumulates, especially in the proximal tubular epithelial cells of kidneys, where it causes tubular cell injury, cell death and a reduction in glomerular filtration rate (GFR). Diet is the main Cd exposure source in non-occupationally exposed and non-smoking populations. The present study aimed to evaluate the reliability of a tolerable Cd intake of 0.83 μg/kg body weight/day, and its corresponding toxicity threshold level of 5.24 μg/g creatinine. The PROAST software was used to calculate the lower 95% confidence bound of the benchmark dose (BMDL) values of Cd excretion (ECd) associated with injury to kidney tubular cells, a defective tubular reabsorption of filtered proteins, and a reduction in the estimated GFR (eGFR). Data were from 289 males and 445 females, mean age of 48.1 years of which 42.8% were smokers, while 31.7% had hypertension, and 9% had chronic kidney disease (CKD). The BMDL value of ECd associated with kidney tubular cell injury was 0.67 ng/L of filtrate in both men and women. Therefore, an environmental Cd exposure producing ECd of 0.67 ng/L filtrate could be considered as Cd accumulation levels below which renal effects are likely to be negligible. A reduction in eGFR and CKD may follow when ECd rises from 0.67 to 1 ng/L of filtrate. These adverse health effects occur at the body burdens lower than those associated with ECd of 5.24 µg/g creatinine, thereby arguing that current health-guiding values do not provide a sufficient health protection

    Time Course of the Response of Myofibrillar and Sarcoplasmic Protein Metabolism to Unweighting of the Soleus Muscle

    Get PDF
    Contributions of altered in vivo protein synthesis and degradation to unweighting atrophy of the soleus muscle in tail-suspended young female rats were analyzed daily for up to 6 days. Specific changes in myofibrillar and sarcoplasmic proteins were also evaluated to assess their contributions to the loss of total protein. Synthesis of myofibrillar and sarcoplasmic proteins was estimated by intramuscular (IM) injection and total protein by intraperitoneal (IP) injection of flooding doses of H-3-phenylaianine. Total protein loss was greatest during the first 3 days following suspension and was a consequence of the loss of myofibrillar rather than sarcoplasmic proteins. However, synthesis of total myofibrillar and sarcoplasmic proteins diminished in parallel beginning in the first 24 hours. Therefore sarcoplasmic proteins must be spared due to a decrease in their degradation. In contrast, myofibrillar protein degradation increased, thus explaining the elevated degradation of the total pool. Following 72 hours of suspension, protein synthesis remained low, but the rate of myofibrillar protein loss diminished, suggesting a slowing of degradation. These various results show acute loss of protein during unweighting atrophy is a consequence of decreased synthesis and increased degradation of myofibrillar proteins, and sarcoplasmic proteins are spared due to slower degradation, likely explaining the sparing of plasma membrane receptors. Based on other published data, we propose that the slowing of atrophy after the initial response may be attributed to an increased effect of insulin

    The NOAEL Equivalent of Environmental Cadmium Exposure Associated with GFR Reduction and Chronic Kidney Disease

    Get PDF
    Cadmium (Cd) is a highly toxic metal pollutant present in virtually all food types. Health guidance values were established to safeguard against excessive dietary Cd exposure. The derivation of such health guidance figures has been shifted from the no-observed-adverse-effect level (NOAEL) to the lower 95% confidence bound of the benchmark dose (BMD), termed BMDL. Here, we used the PROAST software to calculate the BMDL figures for Cd excretion (ECd) associated with a reduction in the estimated glomerular filtration rate (eGFR), and an increased prevalence of chronic kidney disease (CKD), defined as eGFR ≤ 60 mL/min/1.73 m2. Data were from 1189 Thai subjects (493 males and 696 females) mean age of 43.2 years. The overall percentages of smokers, hypertension and CKD were 33.6%, 29.4% and 6.2%, respectively. The overall mean ECd normalized to the excretion of creatinine (Ecr) as ECd/Ecr was 0.64 µg/g creatinine. ECd/Ecr, age and body mass index (BMI) were independently associated with increased prevalence odds ratios (POR) for CKD. BMI figures ≥24 kg/m2 were associated with an increase in POR for CKD by 2.81-fold (p = 0.028). ECd/Ecr values of 0.38–2.49 µg/g creatinine were associated with an increase in POR for CKD risk by 6.2-fold (p = 0.001). The NOAEL equivalent figures of ECd/Ecr based on eGFR reduction in males, females and all subjects were 0.839, 0.849 and 0.828 µg/g creatinine, respectively. The BMDL/BMDU values of ECd/Ecr associated with a 10% increase in CKD prevalence were 2.77/5.06 µg/g creatinine. These data indicate that Cd-induced eGFR reduction occurs at relatively low body burdens and that the population health risk associated with ECd/Ecr of 2.77–5.06 µg/g creatinine was not negligible

    Safe levels of cadmium intake to prevent renal toxicity in human subjects

    Get PDF
    The present review attempts to provide an update of the scientific knowledge on the renal toxicity which occurs in human subjects as a result of chronic ingestion of low-level dietary Cd. It highlights important features of Cd toxicology and sources of uncertainty in the assessment of health risk due to dietary Cd. It also discusses potential mechanisms for increased susceptibility to Cd toxicity in individuals with diabetes. Exposure assessment on the basis of Cd levels in foodstuffs reveals that vegetables and cereals are the main sources of dietary Cd, although Cd is also found in meat, albeit to a lesser extent. Cd accumulates particularly in the kidney and liver, and hence offal contains relatively high amounts. Fish contains only small quantities of Cd, while crustaceans and molluscs may accumulate larger amounts from the aquatic environment. Data on Cd accumulation in human kidney and liver obtained from autopsy studies are presented, along with results of epidemiological studies showing the relationship between renal tubular dysfunction and kidney Cd burden. These findings suggest that a kidney Cd level of 50 mug/g wet weight is a maximum tolerable level in order to avoid abnormal kidney function. This renal Cd burden corresponds to a urinary Cd excretion of 2 mug/d. Accordingly, safe daily levels of Cd intake should be kept below 30 mug per person. Individual variations in Cd absorption and sensitivity to toxicity predicts that a dietary Cd intake of 30 mug/d may result in a slight renal dysfunction in about 1% of the adult population. The previous guideline for a maximum recommended Cd intake of 1 mug/kg body weight per d is thus shown to be too high to ensure that renal dysfunction does not occur as a result of dietary Cd intake

    Cadmium Sources and Toxicity

    Get PDF
    This special issue of Toxics, Cadmium (Cd) sources and toxicity, consists of one comprehensive review [...

    Thailand Cadmium 2010. Foreword

    No full text

    Foreword

    No full text
    corecore