7,279 research outputs found
Application of computer-aided dispatch in law enforcement: An introductory planning guide
A set of planning guidelines for the application of computer-aided dispatching (CAD) to law enforcement is presented. Some essential characteristics and applications of CAD are outlined; the results of a survey of systems in the operational or planning phases are summarized. Requirements analysis, system concept design, implementation planning, and performance and cost modeling are described and demonstrated with numerous examples. Detailed descriptions of typical law enforcement CAD systems, and a list of vendor sources, are given in appendixes
Mass accretion rates of clusters of galaxies: CIRS and HeCS
We use a new spherical accretion recipe tested on N-body simulations to
measure the observed mass accretion rate (MAR) of 129 clusters in the Cluster
Infall Regions in the Sloan Digital Sky Survey (CIRS) and in the Hectospec
Cluster Survey (HeCS). The observed clusters cover the redshift range of
and the mass range of . Based on three-dimensional mass profiles of simulated
clusters reaching beyond the virial radius, our recipe returns MARs that agree
with MARs based on merger trees. We adopt this recipe to estimate the MAR of
real clusters based on measurements of the mass profile out to .
We use the caustic method to measure the mass profiles to these large radii. We
demonstrate the validity of our estimates by applying the same approach to a
set of mock redshift surveys of a sample of 2000 simulated clusters with a
median mass of as well as a sample
of 50 simulated clusters with a median mass of : the median MARs based on the caustic mass profiles of
the simulated clusters are unbiased and agree within with the median
MARs based on the real mass profile of the clusters. The MAR of the CIRS and
HeCS clusters increases with the mass and the redshift of the accreting
cluster, which is in excellent agreement with the growth of clusters in the
CDM model.Comment: 25 pages, 19 figures, 7 table
Critical Currents of Josephson-Coupled Wire Arrays
We calculate the current-voltage characteristics and critical current
I_c^{array} of an array of Josephson-coupled superconducting wires. The array
has two layers, each consisting of a set of parallel wires, arranged at right
angles, such that an overdamped resistively-shunted junction forms wherever two
wires cross. A uniform magnetic field equal to f flux quanta per plaquette is
applied perpendicular to the layers. If f = p/q, where p and q are mutually
prime integers, I_c^{array}(f) is found to have sharp peaks when q is a small
integer. To an excellent approximation, it is found in a square array of n^2
plaquettes, that I_c^{array}(f) \propto (n/q)^{1/2} for sufficiently large n.
This result is interpreted in terms of the commensurability between the array
and the assumed q \times q unit cell of the ground state vortex lattice.Comment: 4 pages, 4 figure
Surface resonance of the (2×1) reconstructed lanthanum hexaboride (001)-cleavage plane : a combined STM and DFT study
We performed a combined study of the (001)-cleavage plane of lanthanum hexaboride (LaB6) using scanning tunneling microscopy and density-functional theory (DFT). Experimentally, we found a (2×1) reconstructed surface on a local scale. The reconstruction is only short-range ordered and tends to order perpendicularly to step edges. At larger distances from surface steps, the reconstruction evolves to a labyrinthlike pattern. These findings are supported by low-energy electron diffraction experiments. Slab calculations within the framework of DFT show that the atomic structure consists of parallel lanthanum chains on top of boron octahedra. Scanning tunneling spectroscopy shows a prominent spectral feature at −0.6eV. Using DFT, we identify this structure as a surface resonance of the (2×1) reconstructed LaB6 (100) surface which is dominated by boron dangling bond states and lanthanum d states
Diurnal variation of upper tropospheric humidity and its relations to convective activities over tropical Africa
Diurnal variations of upper tropospheric humidity (UTH) as well as middle tropospheric humidity (MTH) were examined in conjunction with the diurnal cycle of convection over tropical Africa and the adjacent tropical Atlantic Ocean using Meteosat-8 measurements. Cloud and humidity features were also tracked to document the diurnal variations of humidity and clouds in the Lagrangian framework. <br><br> A distinct diurnal variation of UTH (and MTH) is noted over regions where tropical deep convective cloud systems are commonly observed. The amplitude of the UTH diurnal variation is larger over land, while its variations over convectively inactive subtropical regions are much smaller. The diurnal variation of UTH tends to reach a maximum during nighttime over land, lagging deep convection and high cloud whose maxima occurred in the late afternoon and evening, respectively. It was revealed that these diurnal variations over the African continent are likely associated with continental-scale daytime solar heating and topography, in which topographically-induced signals develop earlier around the mid-afternoon and merge into stronger and broader continental-scale convection clusters later, forming a precipitation maximum in the late afternoon. It was also revealed that advection effect on the diurnal variation appears to be insignificant
Chemically encoded self-organized quantum chain supracrystals with exceptional charge and ion transport properties
Artificially grown superstructures from small building blocks is an intriguing subject in ‘bottom-up’ molecular science and nanotechnology. Although discrete nanoparticles with different morphologies and physicochemical properties are readily produced, assembly them into higher-order structure amenable to practical applications is still a considerable challenge. This report introduces a stepwise heterogeneous approach for coupling colloidal quantum dots (QDs) synthesis with self-organization to directly generate quantum chains (QCs). By using vulcanized sulfur precursors, QDs are interdigitated into microscale chainlike supracrystals associated with oleylamine and oleic acid as structure directing agents. The cooperative nature of the QD growth and assembly have been extended to fabricate binary (PbS) and ternary metal chalcogenides (CuInS2) QC superstructures over a range of length scales. In addition, enhanced ion and charge transfer performance have been demonstrated which are determined to originate from the minimum interparticle distance and nearly bare nanocrystal surface. The process reported here is general and can be readily extended to the production of many other metal chalcogenide QD superstructures for energy storage applications
Possible Glassiness in a Periodic Long-Range Josephson Array
We present an analytic study of a periodic Josephson array with long-range
interactions in a transverse magnetic field. We find that this system exhibits
a first-order transition into a phase characterized by an extensive number of
states separated by barriers that scale with the system size; the associated
discontinuity is small in the limit of weak applied field, thus permitting an
explicit analysis in this regime.Comment: 4 pages, 2 Postscript figures in a separate file
Anti-phase locking in a two-dimensional Josephson junction array
We consider theoretically phase locking in a simple two-dimensional Josephson
junction array consisting of two loops coupled via a joint line transverse to
the bias current. Ring inductances are supposed to be small, and special
emphasis is taken on the influence of external flux. Is is shown, that in the
stable oscillation regime both cells oscillate with a phase shift equal to
(i.e. anti-phase). This result may explain the low radiation output
obtained so far in two-dimensional Josephson junction arrays experimentally.Comment: 11 pages, REVTeX, 1 Postscript figure, Subm. to Appl. Phys. Let
Giant Shapiro Resonances in a Flux Driven Josephson Junction Necklace
We present a detailed study of the dynamic response of a ring of equally
spaced Josephson junctions to a time-periodic external flux, including
screening current effects. The dynamics are described by the resistively
shunted Josephson junction model, appropriate for proximity effect junctions,
and we include Faraday's law for the flux. We find that the time-averaged
characteristics show novel {\em subharmonic giant Shapiro voltage resonances},
which strongly depend on having phase slips or not, on , on the inductance
and on the external drive frequency. We include an estimate of the possible
experimental parameters needed to observe these quantized voltage spikes.Comment: 8 pages RevTeX, 3 figures available upon reques
Significance of low energy impact damage on modal parameters of composite beams by design of experiments
This paper presents an experimental study on the effects of multi-site damage on the vibration response of composite beams damaged by low energy impacts around the barely visible impact damage limit (BVID). The variation of the modal parameters with different levels of impact energy and density of damage is studied. Vibration tests have been carried out with both burst random and classical sine dwell excitations in order to compare that which of the methods among Polymax and Half Bandwidth Method is more suitable for damping estimation in the presence of damage. Design of experiments (DOE) performed on the experimental data show that natural frequency is a more sensitive parameter for damage detection than the damping ratio. It also highlighted energy of impact as the factor having a more significant effect on the modal parameters. Half Bandwidth Method is found to be unsuitable for damping estimation in the presence of damage
- …