8 research outputs found
Stem cell treatment for patients with autoimmune disease by systemic infusion of culture-expanded autologous adipose tissue derived mesenchymal stem cells
Prolonged life expectancy, life style and environmental changes have caused a changing disease pattern in developed countries towards an increase of degenerative and autoimmune diseases. Stem cells have become a promising tool for their treatment by promoting tissue repair and protection from immune-attack associated damage. Patient-derived autologous stem cells present a safe option for this treatment since these will not induce immune rejection and thus multiple treatments are possible without any risk for allogenic sensitization, which may arise from allogenic stem cell transplantations. Here we report the outcome of treatments with culture expanded human adipose-derived mesenchymal stem cells (hAdMSCs) of 10 patients with autoimmune associated tissue damage and exhausted therapeutic options, including autoimmune hearing loss, multiple sclerosis, polymyotitis, atopic dermatitis and rheumatoid arthritis. For treatment, we developed a standardized culture-expansion protocol for hAdMSCs from minimal amounts of fat tissue, providing sufficient number of cells for repetitive injections. High expansion efficiencies were routinely achieved from autoimmune patients and from elderly donors without measurable loss in safety profile, genetic stability, vitality and differentiation potency, migration and homing characteristics. Although the conclusions that can be drawn from the compassionate use treatments in terms of therapeutic efficacy are only preliminary, the data provide convincing evidence for safety and therapeutic properties of systemically administered AdMSC in human patients with no other treatment options. The authors believe that ex-vivo-expanded autologous AdMSCs provide a promising alternative for treating autoimmune diseases. Further clinical studies are needed that take into account the results obtained from case studies as those presented here
Investigating the Role of Islet Cytoarchitecture in Its Oscillation Using a New β-Cell Cluster Model
The oscillatory insulin release is fundamental to normal glycemic control. The basis of the oscillation is the intercellular coupling and bursting synchronization of β cells in each islet. The functional role of islet β cell mass organization with respect to its oscillatory bursting is not well understood. This is of special interest in view of the recent finding of islet cytoarchitectural differences between human and animal models. In this study we developed a new hexagonal closest packing (HCP) cell cluster model. The model captures more accurately the real islet cell organization than the simple cubic packing (SCP) cluster that is conventionally used. Using our new model we investigated the functional characteristics of β-cell clusters, including the fraction of cells able to burst fb, the synchronization index λ of the bursting β cells, the bursting period Tb, the plateau fraction pf, and the amplitude of intracellular calcium oscillation [Ca]. We determined their dependence on cluster architectural parameters including number of cells nβ, number of inter-β cell couplings of each β cell nc, and the coupling strength gc. We found that at low values of nβ, nc and gc, the oscillation regularity improves with their increasing values. This functional gain plateaus around their physiological values in real islets, at nβ∼100, nc∼6 and gc∼200 pS. In addition, normal β-cell clusters are robust against significant perturbation to their architecture, including the presence of non-β cells or dead β cells. In clusters with nβ>∼100, coordinated β-cell bursting can be maintained at up to 70% of β-cell loss, which is consistent with laboratory and clinical findings of islets. Our results suggest that the bursting characteristics of a β-cell cluster depend quantitatively on its architecture in a non-linear fashion. These findings are important to understand the islet bursting phenomenon and the regulation of insulin secretion, under both physiological and pathological conditions
First Results of the ROBEX Analogue Mission Campaign: Robotic Deployment of Seismic Networks for Future Lunar Missions
This paper presents first results of the analog mission
campaign which was performed between the 12th of
June and the 10th of July 2017 on Mount Etna in
Europe, Italy. The aim of the ROBEX demonstration
mission is to test and validate a complex robotic
mission. This includes highly autonomous tasks with
supervision from scientists to guarantee
measurement of real and scientifically relevant
data. The main scientific objective of the ROBEX
mission, the detailed analysis of the lunar crust
layers, that is replaced by the analysis of Etna lava
layers in the demo mission, has been guiding the
developments of the last four years.
As key missions, a seismic network has been
deployed and a seismic profile measurement has
been conducted using only robots on the landing site.
Additional experiments consisted of long term
autonomous navigation, multi-robot mapping and
exploration of craters as well as experiments with the
aim of geological analyses and probe selection.
During the one month analog campaign, a realistic
mission scenario has been built up, including a
control station approximately 30 km from the
remote site
The PLATO Mission
International audiencePLATO (PLAnetary Transits and Oscillations of stars) is ESA's M3 mission designed to detect and characterise extrasolar planets and perform asteroseismic monitoring of a large number of stars. PLATO will detect small planets (down to <2 R_(Earth)) around bright stars (<11 mag), including terrestrial planets in the habitable zone of solar-like stars. With the complement of radial velocity observations from the ground, planets will be characterised for their radius, mass, and age with high accuracy (5 %, 10 %, 10 % for an Earth-Sun combination respectively). PLATO will provide us with a large-scale catalogue of well-characterised small planets up to intermediate orbital periods, relevant for a meaningful comparison to planet formation theories and to better understand planet evolution. It will make possible comparative exoplanetology to place our Solar System planets in a broader context. In parallel, PLATO will study (host) stars using asteroseismology, allowing us to determine the stellar properties with high accuracy, substantially enhancing our knowledge of stellar structure and evolution. The payload instrument consists of 26 cameras with 12cm aperture each. For at least four years, the mission will perform high-precision photometric measurements. Here we review the science objectives, present PLATO's target samples and fields, provide an overview of expected core science performance as well as a description of the instrument and the mission profile at the beginning of the serial production of the flight cameras. PLATO is scheduled for a launch date end 2026. This overview therefore provides a summary of the mission to the community in preparation of the upcoming operational phases
The PLATO Mission
International audiencePLATO (PLAnetary Transits and Oscillations of stars) is ESA's M3 mission designed to detect and characterise extrasolar planets and perform asteroseismic monitoring of a large number of stars. PLATO will detect small planets (down to <2 R_(Earth)) around bright stars (<11 mag), including terrestrial planets in the habitable zone of solar-like stars. With the complement of radial velocity observations from the ground, planets will be characterised for their radius, mass, and age with high accuracy (5 %, 10 %, 10 % for an Earth-Sun combination respectively). PLATO will provide us with a large-scale catalogue of well-characterised small planets up to intermediate orbital periods, relevant for a meaningful comparison to planet formation theories and to better understand planet evolution. It will make possible comparative exoplanetology to place our Solar System planets in a broader context. In parallel, PLATO will study (host) stars using asteroseismology, allowing us to determine the stellar properties with high accuracy, substantially enhancing our knowledge of stellar structure and evolution. The payload instrument consists of 26 cameras with 12cm aperture each. For at least four years, the mission will perform high-precision photometric measurements. Here we review the science objectives, present PLATO's target samples and fields, provide an overview of expected core science performance as well as a description of the instrument and the mission profile at the beginning of the serial production of the flight cameras. PLATO is scheduled for a launch date end 2026. This overview therefore provides a summary of the mission to the community in preparation of the upcoming operational phases