20 research outputs found

    Quantifying energy demand and greenhouse gas emissions of road infrastructure projects: An LCA case study of the Oslo fjord crossing in Norway

    Get PDF
    The road sector consumes large amounts of materials and energy and produces large quantities of greenhouse gas emissions, which can be reduced with correct information in the early planning stages of road project. An important aspect in the early planning stages is the choice between alternative road corridors that will determine the route distance and the subsequent need for different road infrastructure elements, such as bridges and tunnels. Together, these factors may heavily influence the life cycle environmental impacts of the road project. This paper presents a case study for two prospective road corridor alternatives for the Oslo fjord crossing in Norway and utilizes in a streamlined model based on life cycle assessment principles to quantify cumulative energy demand and greenhouse gas emissions for each route. This technique can be used to determine potential environmental impacts of road projects by overcoming several challenges in the early planning stages, such as the limited availability of detailed life cycle inventory data on the consumption of material and energy inputs, large uncertainty in the design and demand for road infrastructure elements, as well as in future traffic and future vehicle technologies. The results show the importance of assessing different life cycle activities, input materials, fuels and the critical components of such a system. For the Oslo fjord case, traffic during operation contributes about 94 % and 89 % of the annual CED and about 98 % and 92 % of the annual GHG emissions, for a tunnel and a bridge fjord crossing alternative respectively

    Quantifying energy demand and greenhouse gas emissions of road infrastructure projects: An LCA case study of the Oslo fjord crossing in Norway.

    Get PDF
    The road sector consumes large amounts of materials and energy and produces large quantities of greenhouse gas emissions, which can be reduced with correct information in the early planning stages of road project. An important aspect in the early planning stages is the choice between alternative road corridors that will determine the route distance and the subsequent need for different road infrastructure elements, such as bridges and tunnels. Together, these factors may heavily influence the life cycle environmental impacts of the road project. This paper presents a case study for two prospective road corridor alternatives for the Oslo fjord crossing in Norway and utilizes in a streamlined model based on life cycle assessment principles to quantify cumulative energy demand and greenhouse gas emissions for each route. This technique can be used to determine potential environmental impacts of road projects by overcoming several challenges in the early planning stages, such as the limited availability of detailed life cycle inventory data on the consumption of material and energy inputs, large uncertainty in the design and demand for road infrastructure elements, as well as in future traffic and future vehicle technologies. The results show the importance of assessing different life cycle activities, input materials, fuels and the critical components of such a system. For the Oslo fjord case, traffic during operation contributes about 94 % and 89 % of the annual CED and about 98 % and 92 % of the annual GHG emissions, for a tunnel and a bridge fjord crossing alternative respectively

    Life Cycle Impacts of Road Infrastructure : Assessment of energy use and greenhouse gas emissions

    No full text
    Road infrastructure is essential in the development of human society, but has both negative and positive impacts. Large amounts of money and natural resources are spent each year on its construction, operation and maintenance. Obviously, there is potentially significantenvironmental impact associated with these activities. Thus the need for integration of life cycle environmental impacts of road infrastructure into transport planning is currently being widely recognised on international and national level. However certain issues, such as energy use and greenhouse gas (GHG) emissions from the construction, maintenance and operation of road infrastructure, are rarely considered during the current transport planning process in Sweden and most other countries.This thesis examined energy use and GHG emissions for the whole life cycle (construction, operation, maintenance and end-of-life) of road infrastructure, with the aim of improving transport planning on both strategic and project level. Life Cycle Assessment (LCA) was applied to two selected case studies: LCA of a road tunnel and LCA of three methods for asphalt recycling and reuse: hot in-plant, hot in-place and reuse as unbound material. The impact categories selected for analysis were Cumulative Energy Demand (CED) and Global Warming Potential (GWP). Other methods used in the research included interviews and a literature review.The results of the first case study indicated that the operational phase of the tunnel contributed the highest share of CED and GWP throughout the tunnel’s life cycle. Construction of concrete tunnels had much higher CED and GWP per lane-metre than construction of rocktunnels. The results of the second case study showed that hot in-place recycling of asphalt gave slightly more net savings of GWP and CED than hot in-plant recycling. Asphalt reuse was less environmentally beneficial than either of these alternatives, resulting in no net savings of GWP and minor net savings of CED. Main sources of data uncertainty identified in the two case-studies included prediction of future electricity mix and inventory data for asphalt concrete.This thesis contributes to methodological development which will be useful to future infrastructure LCAs in terms of inventory data collection. It presents estimated amounts of energy use and GHG emissions associated with road infrastructure, on the example of roadtunnel and asphalt recycling. Operation of road infrastructure and production of construction materials are identified as the main priorities for decreasing GHG emissions and energy use during the life cycle of road infrastructure. It was concluded that the potential exists for significant decreases in GHG emissions and energy use associated with the road transport system if the entire life cycle of road infrastructure is taken into consideration from the very start of the policy-making process.QC 2012022

    Consideration of life cycle energy use and greenhouse gas emissions for improved road infrastructure planning

    No full text
    Global warming is one of the biggest challenges of our society. The road transport sector is responsible for a big share of Greenhouse Gas (GHG) emissions, which are considered to be the dominant cause of global warming. Although most of those emissions are associated with traffic operation, road infrastructure should not be ignored, as it involves high consumption of energy and materials during a long lifetime. The aim of my research was to contribute to improved road infrastructure planning by developing methods and models to include a life cycle perspective. In order to reach the aim, GHG emissions and energy use at different life cycle stages of road infrastructure were assessed in three case studies using Life Cycle Assessment (LCA). These case studies were also used for development of methodology for LCA of road infrastructure. I have also investigated the coupling of LCA with Geographic Information Systems (GIS) and the possibility to integrate LCA into Environmental Impact Assessment (EIA) and Strategic Environmental Assessment (SEA). The results of the first case study indicated that operation of the tunnel (mainly, lighting and ventilation) has the largest contribution in terms of energy use and GHG emissions throughout its life cycle. The second case study identified the main hotspots and compared two methods for asphalt recycling and asphalt reuse. The results of the third case study indicated that due to the dominant contribution of traffic to the total impact of the road transport system, the difference in road length plays a major role in choice of road alternatives during early planning of road infrastructure. However, infrastructure should not be neglected, especially in the case of similar lengths of road alternatives, for roads with low volumes of traffic or when they include bridges or tunnels. This thesis contributed in terms of foreground and background data collection for further LCA studies of road infrastructure. Preliminary Bill of Quantities (BOQ) was identified and used as a source for site-specific data collection. A new approach was developed and tested for using geological data in a GIS environment as a data source on earthworks for LCA. Moreover, this thesis demonstrated three possible ways for integrating LCA in early stages of road infrastructure planning.QC 20160329</p

    Consideration of life cycle energy use and greenhouse gas emissions for improved road infrastructure planning

    No full text
    Global warming is one of the biggest challenges of our society. The road transport sector is responsible for a big share of Greenhouse Gas (GHG) emissions, which are considered to be the dominant cause of global warming. Although most of those emissions are associated with traffic operation, road infrastructure should not be ignored, as it involves high consumption of energy and materials during a long lifetime. The aim of my research was to contribute to improved road infrastructure planning by developing methods and models to include a life cycle perspective. In order to reach the aim, GHG emissions and energy use at different life cycle stages of road infrastructure were assessed in three case studies using Life Cycle Assessment (LCA). These case studies were also used for development of methodology for LCA of road infrastructure. I have also investigated the coupling of LCA with Geographic Information Systems (GIS) and the possibility to integrate LCA into Environmental Impact Assessment (EIA) and Strategic Environmental Assessment (SEA). The results of the first case study indicated that operation of the tunnel (mainly, lighting and ventilation) has the largest contribution in terms of energy use and GHG emissions throughout its life cycle. The second case study identified the main hotspots and compared two methods for asphalt recycling and asphalt reuse. The results of the third case study indicated that due to the dominant contribution of traffic to the total impact of the road transport system, the difference in road length plays a major role in choice of road alternatives during early planning of road infrastructure. However, infrastructure should not be neglected, especially in the case of similar lengths of road alternatives, for roads with low volumes of traffic or when they include bridges or tunnels. This thesis contributed in terms of foreground and background data collection for further LCA studies of road infrastructure. Preliminary Bill of Quantities (BOQ) was identified and used as a source for site-specific data collection. A new approach was developed and tested for using geological data in a GIS environment as a data source on earthworks for LCA. Moreover, this thesis demonstrated three possible ways for integrating LCA in early stages of road infrastructure planning.QC 20160329</p

    Information System project for Enterprise risk register and Business continuity plan development

    No full text
    Diplomdarba mērķis ir izstrādāt un ieviest biznesa procesu nepārtrauktības plānu un riska uzskaites informācijas sistēmu uzņēmumā Cabot Latvia, nodrošinot vienotu riska uzskaites un novēršanas sistēmu. Diplomdarbā aprakstīta uzņēmuma darbība, apskatīta pieejamā statistika par biznesa procesu dīkstāves cēloņiem, izpētīti tirgū pieejamie alternatīvie risinājumi, kā arī plaši aprakstīti un analizēti uzņēmuma biznesa procesi un informācijas sistēmas, pētot procesa posmus, kas pakļauti risku ietekmei. Biznesa procesu nepārtrauktības plāns tika izstrādāts, balstoties uz darba gaitā izstrādāto informācijas sistēmu projektu. Mērķa sasniegšanai tika izstrādi riska reģistrēšanas kritēriji, projektētas saskarnes formas, veidots risku uzskaites datu bāzes projekts. Bakalaurā ir 83 lappuses, 19 attēli, 12 tabulas un 2 pielikumi.The objective of the diploma paper is to develop and implement business continuity plan and risk classification register information system project within company Cabot Latvia, providing a united risk classification and monitoring system. Besides the company description, the paper describes the available statistics on the causes of business process downtime. The paper explores the alternative solutions available on the market. Business continuity plan is elaborated, based on the risk register data basis developed within the information system project. In order to reach the aim of this paper - objective risk criteria was developed, user interface was designed and the risk register database project was created. The paper contains 83 pages, 18 images, 12 tables and 2 attachments

    Klimatberäkningar för paketleverans med Instabox - Slutrapport av delprojekt inom GrönBostad Stockholm

    No full text
    Instabox offers a freight service that can deliver parcels to lockerswhere the customer can retrieve their parcel using a temporary code. As part of Instabox’s efforts to reduce the climate impact of their transports, IVL Swedish Environmental Research Institute has carried out life cycle-based calculations of the climate impact from delivering parcels with Instabox’s service. Calculations of the climate savings that can be achieved when switching to alternative fuels were also made. The results showed that the largest climate savings could be achieved when changing the fuel to HVO (Hydrogenated Vegetable Oil) or electricity from photovoltaics, which can be seen in Figure 1 below. The calculations of the climate impact included a Well to Wheel approach where emissions from production and distribution of the fuel to the use of the fuel in the engine was included. Only the climate impact of the fuel has been included, while the climate impact that arises from the production of vehicles (including batteries) has not been included. Depending on which raw materials are used in the production of HVO the climate footprint can vary. It is therefore of importance to set demands towards the suppliers regarding the sustainability of the raw material. A further analysis should be made to ensure the availability of filling stations and charging stations for the various fuels. It is also important to consider the implementation of environmental zones in different municipalities from the year 2020. The implementation regulates emissions from light vehicles. This project has been financed with funds from the European Regional Development Fund within the Grön BoStad Stockholm project.Instabox erbjuder en frakttjänst som levererar paket till skåp, istället för till ombud eller terminaler, där kunden själv kan hämta ut sitt paket med en tillfällig kod. Målet med projektet var att beräkna klimatpåverkan som orsakas vid transporten av ett paket med Instabox tjänst samt klimatbesparingen vid utbyte av diesel (som används idag) till ett urval av alternativa bränslen och el. Rapporten togs fram på uppdrag av Instabox inom projektet Grön BoStad Stockholm, med finansiering från europeiska regionala utvecklingsfonden

    Energy Use and Greenhouse Gas Emissions during the Life Cycle Stages of a Road Tunnel : the Swedish Case Norra Länken

    Get PDF
    Inclusion of Life Cycle Assessment during the planning of transport infrastructure is rarely used in practice, but is becoming a widely discussed issue nowadays. This study sought to improve understanding of the life cycle energy use and greenhouse gas emissions of transport infrastructure, using the example of a road tunnel. Two levels of analysis were used: 1) detailed data inventory for the construction of rock tunnels; and 2) screening assessment for the life cycle phases of the whole tunnel infrastructure (including its main parts: concrete and rock tunnels). The first level of analysis showed that production of materials (i.e. concrete and asphalt) made the largest contribution to Cumulative Energy Demand and Global Warming Potential. The second level of analysis indicated that concrete tunnels had much higher Cumulative Energy Demand and Global Warming Potential per lane-metre than rock tunnels. Moreover, the operational phase of the tunnel was found to have the highest share of energy use and greenhouse gas emissions throughout the tunnel’s life cycle.QC 20140912</p
    corecore