4,383 research outputs found

    Variation of the Diameter of the Sun as Measured by the Solar Disk Sextant (SDS)

    Full text link
    The balloon-borne Solar Disk Sextant (SDS) experiment has measured the angular size of the Sun on seven occasions spanning the years 1992 to 2011. The solar half-diameter -- observed in a 100-nm wide passband centred at 615 nm -- is found to vary over that period by up to 200 mas, while the typical estimated uncertainty of each measure is 20 mas. The diameter variation is not in phase with the solar activity cycle; thus, the measured diameter variation cannot be explained as an observational artefact of surface activity. Other possible instrument-related explanations for the observed variation are considered but found unlikely, leading us to conclude that the variation is real. The SDS is described here in detail, as is the complete analysis procedure necessary to calibrate the instrument and allow comparison of diameter measures across decades.Comment: 41 pages; appendix and 2 figures added plus some changes in text based on referee's comments; to appear in MNRA

    Application of the Covariant Spectator Theory to the study of heavy and heavy-light mesons

    Full text link
    As an application of the Covariant Spectator Theory (CST) we calculate the spectrum of heavy-light and heavy-heavy mesons using covariant versions of a linear confining potential, a one- gluon exchange, and a constant interaction. The CST equations possess the correct one-body limit and are therefore well-suited to describe mesons in which one quark is much heavier than the other. We find a good fit to the mass spectrum of heavy-light and heavy-heavy mesons with just three parameters (apart from the quark masses). Remarkably, the fit parameters are nearly unchanged when we fit to experimental pseudoscalar states only or to the whole spectrum. Because pseudoscalar states are insensitive to spin-orbit interactions and do not determine spin-spin interactions separately from central interactions, this result suggests that it is the covariance of the kernel that correctly predicts the spin-dependent quark-antiquark interaction

    Singularity-free two-body equation with confining interactions in momentum space

    Full text link
    We are developing a covariant model for all mesons that can be described as quark-antiquark bound states in the framework of the Covariant Spectator Theory (CST) in Minkowski space. The kernel of the bound-state equation contains a relativistic generalization of a linear confining potential which is singular in momentum space and makes its numerical solution more difficult. The same type of singularity is present in the momentum-space Schr\"odinger equation, which is obtained in the nonrelativistic limit. We present an alternative, singularity-free form of the momentum-space Schr\"odinger equation which is much easier to solve numerically and which yields accurate and stable results. The same method will be applied to the numerical solution of the CST bound-state equations.Comment: 4 pages, 2 figures, talk presented at the 22nd European Conference on Few-Body Problems in Physics (EFB22), Krakow, Poland, 9 - 13 September 201

    Covariant spectator theory of quark-antiquark bound states: Mass spectra and vertex functions of heavy and heavy-light mesons

    Full text link
    We use the covariant spectator theory with an effective quark-antiquark interaction, containing Lorentz scalar, pseudoscalar, and vector contributions, to calculate the masses and vertex functions of, simultaneously, heavy and heavy-light mesons. We perform least-square fits of the model parameters, including the quark masses, to the meson spectrum and systematically study the sensitivity of the parameters with respect to different sets of fitted data. We investigate the influence of the vector confining interaction by using a continuous parameter controlling its weight. We find that vector contributions to the confining interaction between 0% and about 30% lead to essentially the same agreement with the data. Similarly, the light quark masses are not very tightly constrained. In all cases, the meson mass spectra calculated with our fitted models agree very well with the experimental data. We also calculate the mesons wave functions in a partial wave representation and show how they are related to the meson vertex functions in covariant form.Comment: 23 pages, 10 figures. Minor corrections of previous version. To be published in Phys. Rev.

    Superbubbles

    Get PDF
    Individual massive stars with M sub bol -6 have huge stellar winds that create interstellar bubbles. Stars with masses greater than 8 solar mass are considered supernova progenitors. These massive stars are numerous in OB associations where few supernova remnants are detected. Model calculations describing the evolution of an association show: that large, hot cavities are formed by pushing the ambient gas into neutral shells; that the shell radii change with galactocentric radius; that only thirty percent of the interstellar medium is in the form of supercavities; and that a consequence is that only a small fraction of supernovae form supernova remnants

    Quarkonia and heavy-light mesons in a covariant quark model

    Get PDF
    Preliminary calculations using the Covariant Spectator Theory (CST) employed a scalar linear confining interaction and an additional constant vector potential to compute the mesonic mass spectra. In this work we generalize the confining interaction to include more general structures, in particular a vector and also a pseudoscalar part, as suggested by a recent study. A one-gluon-exchange kernel is also implemented to describe the short-range part of the interaction. We solve the simplest CST approximation to the complete Bethe-Salpeter equation, the one-channel spectator equation, using a numerical technique that eliminates all singularities from the kernel. The parameters of the model are determined through a fit to the experimental pseudoscalar meson spectra, with a good agreement for both quarkonia and heavy-light states.Comment: 4 pages, 2 figures; 21st International Conference on Few-Body Problems in Physics, May 18 - 22, 2015, Chicago, US

    Relativistic phenomenology of meson spectra with a covariant quark model in Minkowski space

    Get PDF
    In this work, we perform a covariant treatment of quark-antiquark systems. We calculate the spectra and wave functions using a formalism based on the Covariant Spectator Theory (CST). Our results not only reproduce very well the experimental data with a very small set of global parameters, but they also allow a direct test of the predictive power of covariant kernels

    Optimal control of a dengue epidemic model with vaccination

    Get PDF
    We present a SIR+ASI epidemic model to describe the interaction between human and dengue fever mosquito populations. A control strategy in the form of vaccination, to decrease the number of infected individuals, is used. An optimal control approach is applied in order to find the best way to fight the disease.Comment: This is a preprint of a paper accepted for presentation at ICNAAM 2011, Halkidiki, Greece, 19-25 September 2011, and to appear in AIP Conference Proceedings, volume 138

    Modeling and Optimal Control Applied to a Vector Borne Disease

    Full text link
    A model with six mutually-exclusive compartments related to Dengue disease is presented. In this model there are three vector control tools: insecticides (larvicide and adulticide) and mechanical control. The problem is studied using an Optimal Control (OC) approach. The human data for the model is based on the Cape Verde Dengue outbreak. Some control measures are simulated and their consequences analyzed

    Insecticide control in a Dengue epidemics model

    Get PDF
    A model for the transmission of dengue disease is presented. It consists of eight mutually-exclusive compartments representing the human and vector dynamics. It also includes a control parameter (insecticide) in order to fight the mosquitoes. The main goal of this work is to investigate the best way to apply the control in order to effectively reduce the number of infected humans and mosquitoes. A case study, using data of the outbreak that occurred in 2009 in Cape Verde, is presented.Comment: Accepted 28/07/2010 in the special session "Numerical Optimization" of the 8th International Conference of Numerical Analysis and Applied Mathematics (ICNAAM 2010), Rhodes, Greece, 19-25 September 201
    corecore