323 research outputs found
Control of Multi-level Voltage States in a Hysteretic SQUID Ring-Resonator System
In this paper we study numerical solutions to the quasi-classical equations
of motion for a SQUID ring-radio frequency (rf) resonator system in the regime
where the ring is highly hysteretic. In line with experiment, we show that for
a suitable choice of of ring circuit parameters the solutions to these
equations of motion comprise sets of levels in the rf voltage-current dynamics
of the coupled system. We further demonstrate that transitions, both up and
down, between these levels can be controlled by voltage pulses applied to the
system, thus opening up the possibility of high order (e.g. 10 state),
multi-level logic and memory.Comment: 8 pages, 9 figure
HLA-A24 and survivin: possibilities in therapeutic vaccination against cancer
Recently, it was described that an HLA-A24 restricted peptide derived from the survivin splice variant survivin-2B can be recognized by CD8(+) cytotoxic T-cells. The identification of an HLA-A24 epitope is critical for survivin-based immunotherapy as HLA-24 is the most frequent HLA allele in Asia. Consequently, this survivin-2B epitope is already a target in a clinical study in patients with advanced or recurrent colorectal cancer expressing survivin. However, the splice variant survivin-2B has been described to be pro-apoptotic, and is only expressed at low levels in most malignant tissues. Furthermore, survivin-2B expression are significantly decreased in later tumor stages and inversely correlated with tumor differentiation and invasion. Consequently, survivin is a more general vaccination candidate than the splice variant survivin-2B. Here, we on the basis of spontaneous immune responses in HLA-A24+ cancer patients describes that a HLA-A24-restricted survivin epitopes does indeed exist. Consequently, this epitope is an attractive target for the ongoing survivin-based peptide immunotherapy against cancer
Mesoscopic conductance fluctuations in InAs nanowire-based SNS junctions
We report a systematic experimental study of mesoscopic conductance
fluctuations in superconductor/normal/superconductor (SNS) devices
Nb/InAs-nanowire/Nb. These fluctuations far exceed their value in the normal
state and strongly depend on temperature even in the low-temperature regime.
This dependence is attributed to high sensitivity of perfectly conducting
channels to dephasing and the SNS fluctuations thus provide a sensitive probe
of dephasing in a regime where normal transport fails to detect it. Further,
the conductance fluctuations are strongly non-linear in bias voltage and reveal
sub-gap structure. The experimental findings are qualitatively explained in
terms of multiple Andreev reflections in chaotic quantum dots with imperfect
contacts.Comment: Manuscript and supplemen
Switching between dynamic states in intermediate-length Josephson junctions
The appearance of zero-field steps (ZFS’s) in the current-voltage characteristics of intermediate-length overlap-geometry Josephson tunnel junctions described by a perturbed sine-Gordon equation (PSGE) is associated with the growth of parametrically excited instabilities of the McCumber background curve (MCB). A linear stability analysis of a McCumber solution of the PSGE in the asymptotic linear region of the MCB and in the absence of magnetic field yields a Hill’s equation which predicts how the number, locations, and widths of the instability regions depend on the junction parameters. A numerical integration of the PSGE in terms of truncated series of time-dependent Fourier spatial modes verifies that the parametrically excited instabilities of the MCB evolve into the fluxon oscillations characteristic of the ZFS’s. An approximate analysis of the Fourier mode equations in the presence of a small magnetic field yields a field-dependent Hill’s equation which predicts that the major effect of such a field is to reduce the widths of the instability regions. Experimental measurements on Nb-NbxOy-Pb junctions of intermediate length, performed at different operating temperatures in order to vary the junction parameters and for various magnetic field values, verify the physical existence of switching from the MCB to the ZFS’s. Good qualitative, and in many cases quantitative, agreement between analytic, numerical, and experimental results is obtained
Superconductivity enhanced conductance fluctuations in few layer graphene nanoribbons
We investigate the mesoscopic disorder induced rms conductance variance
in a few layer graphene nanoribbon (FGNR) contacted by two
superconducting (S) Ti/Al contacts. By sweeping the back-gate voltage, we
observe pronounced conductance fluctuations superimposed on a linear background
of the two terminal conductance G. The linear gate-voltage induced response can
be modeled by a set of inter-layer and intra-layer capacitances.
depends on temperature T and source-drain voltage .
increases with decreasing T and . When lowering , a
pronounced cross-over at a voltage corresponding to the superconducting energy
gap is observed. For |V_{sd}|\ltequiv \Delta the fluctuations are
markedly enhanced. Expressed in the conductance variance of one
graphene-superconducutor (G-S) interface, values of 0.58 e^2/h are obtained at
the base temperature of 230 mK. The conductance variance in the sub-gap region
are larger by up to a factor of 1.4-1.8 compared to the normal state. The
observed strong enhancement is due to phase coherent charge transfer caused by
Andreev reflection at the nanoribbon-superconductor interface.Comment: 15 pages, 5 figure
Kink propagation in a two-dimensional curved Josephson junction
We consider the propagation of sine-Gordon kinks in a planar curved strip as
a model of nonlinear wave propagation in curved wave guides. The homogeneous
Neumann transverse boundary conditions, in the curvilinear coordinates, allow
to assume a homogeneous kink solution. Using a simple collective variable
approach based on the kink coordinate, we show that curved regions act as
potential barriers for the wave and determine the threshold velocity for the
kink to cross. The analysis is confirmed by numerical solution of the 2D
sine-Gordon equation.Comment: 8 pages, 4 figures (2 in color
Isotope effect in impure high T_c superconductors
The influence of various kinds of impurities on the isotope shift exponent
\alpha of high temperature superconductors has been studied. In these materials
the dopant impurities, like Sr in La_{2-x}Sr_xCuO_4, play different role and
usually occupy different sites than impurities like Zn, Fe, Ni {\it etc}
intentionally introduced into the system to study its superconducting
properties.
In the paper the in-plane and out-of-plane impurities present in layered
superconductors have been considered. They differently affect the
superconducting transition temperature T_c. The relative change of isotope
shift coefficient, however, is an universal function of T_c/T_{c0} (T_{c0}
reffers to impurity free system) {\it i.e.} for angle independent scattering
rate and density of states function it does not depend whether the change of
T_c is due to in- or out-of-plane impurities. The role of the anisotropic
impurity scattering in changing oxygen isotope coefficient of superconductors
with various symmetries of the order parameter is elucidated. The comparison of
the calculated and experimental dependence of \alpha/\alpha_0, where \alpha_0
is the clean system isotope shift coefficient, on T_c/T_{c0} is presented for a
number of cases studied.
The changes of \alpha calculated within stripe model of superconductivity in
copper oxides resonably well describe the data on
La_{1.8}Sr_{0.2}Cu_{1-x}(Fe,Ni)_xO_4, without any fitting parameters.Comment: 8 pages, 6 figures, Phys. Rev. B67 (2003) accepte
- …