5 research outputs found

    A Landscape of Epigenetic Regulation by MicroRNAs to the Hallmarks of Cancer and Cachexia: Implications of Physical Activity to Tumor Regression

    Get PDF
    In the last decades, there has been a remarkable advance in the treatment of most types of cancer, improving the patient’s prognosis. During cancer progression, tumor cells develop several biological changes to support initiation, proliferation, and resistance to death. Nearly 50–80% of all oncologic patients experience rapid weight loss that is related to ~20% of cancer-related deaths. Cancer cachexia is a syndrome characterized by loss of skeletal muscle mass, anorexia, and anemia. A lot of effort in scientific investigation has contributed to the understanding of cancer processes, in which epigenetic changes, as microRNAs, can influence cancer progression. Therefore, useful strategies to control the cancer-induced epigenetic changes in the tumor cells can have a key role in a clinical perspective to decrease the cancer development and aggressiveness. Physical activity has been proposed as a suitable tool to manage tumor growth and cachexia and to improve the deleterious sequelae experienced during cancer treatment. Although the molecular mechanisms involved in these responses are poorly understood, this chapter aims to discuss the role of microRNAs in the cancer-induced epigenetic changes and how physical activity could influence the epigenetic control of tumor cells and cachexia and their potential role in clinical applications for cancer

    Moderate exercise training promotes adaptations in coronary blood flow and adenosine production in normotensive rats

    Get PDF
    OBJECTIVES: Aerobic exercise training prevents cardiovascular risks. Regular exercise promotes functional and structural adaptations that are associated with several cardiovascular benefits. The aim of this study is to investigate the effects of swimming training on coronary blood flow, adenosine production and cardiac capillaries in normotensive rats. METHODS: Wistar rats were randomly divided into two groups: control (C) and trained (T). An exercise protocol was performed for 10 weeks and 60 min/day with a tail overload of 5% bodyweight. Coronary blood flow was quantified with a color microsphere technique, and cardiac capillaries were quantified using light microscopy. Adenine nucleotide hydrolysis was evaluated by enzymatic activity, and protein expression was evaluated by western blot. The results are presented as the means ± SEMs (p<0.05). RESULTS: Exercise training increased the coronary blood flow and the myocardial capillary-to-fiber ratio. Moreover, the circulating and cardiac extracellular adenine nucleotide hydrolysis was higher in the trained rats than in the sedentary rats due to the increased activity and protein expression of enzymes, such as E-NTPDase and 59- nucleotidase. CONCLUSIONS: Swimming training increases coronary blood flow, number of cardiac capillaries, and adenine nucleotide hydrolysis. Increased adenosine production may be an important contributor to the enhanced coronary blood flow and angiogenesis that were observed in the exercise-trained rats; collectively, these results suggest improved myocardial perfusion

    Angiotensin II Promotes Skeletal Muscle Angiogenesis Induced by Volume-Dependent Aerobic Exercise Training: Effects on miRNAs-27a/b and Oxidant–Antioxidant Balance

    Get PDF
    Aerobic exercise training (ET) produces beneficial adaptations in skeletal muscles, including angiogenesis. The renin–angiotensin system (RAS) is highly involved in angiogenesis stimuli. However, the molecular mechanisms underlying capillary growth in skeletal muscle induced by aerobic ET are not completely understood. This study aimed to investigate the effects of volume-dependent aerobic ET on skeletal muscle angiogenesis involving the expression of miRNAs-27a and 27b on RAS and oxidant–antioxidant balance. Eight-week-old female Wistar rats were divided into three groups: sedentary control (SC), trained protocol 1 (P1), and trained protocol 2 (P2). P1 consisted of 60 min/day of swimming, 5×/week, for 10 weeks. P2 consisted of the same protocol as P1 until the 8th week, but in the 9th week, rats trained 2×/day, and in the 10th week, trained 3×/day. Angiogenesis and molecular analyses were performed in soleus muscle samples. Furthermore, to establish ET-induced angiogenesis through RAS, animals were treated with an AT1 receptor blocker (losartan). Aerobic ET promoted higher VO2 peak and exercise tolerance values. In contrast, miRNA-27a and -27b levels were reduced in both trained groups, compared with the SC group. This was in parallel with an increase in the ACE1/Ang II/VEGF axis, which led to a higher capillary-to-fiber ratio. Moreover, aerobic ET induced an antioxidant profile increasing skeletal muscle SOD2 and catalase gene expression, which was accompanied by high nitrite levels and reduced nitrotyrosine concentrations in the circulation. Additionally, losartan treatment partially re-established the miRNAs expression and the capillary-to-fiber ratio in the trained groups. In summary, aerobic ET promoted angiogenesis through the miRNA-27a/b–ACE1/Ang II/VEGF axis and improved the redox balance. Losartan treatment demonstrates the participation of RAS in ET-induced vascular growth. miRNAs and RAS components are promising potential targets to modulate angiogenesis for combating vascular diseases, as well as potential biomarkers to monitor training interventions and physical performance

    Profile of cardiac microRNAs in tained female rats and the potential for gene therapy in hypertension

    No full text
    O treinamento físico aeróbio (TF) e a hipertensão arterial (HA) induzem hipertrofia cardíaca (HC) com características diferentes, e entre as diferenças moleculares podem estar a elucidação de abordagens terapêuticas como os microRNAs (miRNAs). Selecionamos de dados de miRNAarray, 15 miRNAs cardíacos induzidos por dois protocolos de treinamento físico de natação (TF) e comparamos com o miRNAarray em modelo de hipertensão arterial (animais espontaneamente hipertensos, SHR). Foram selecionados 4 miRNAs de interesse (miRNA-27a, 27b, 126 e 29c) que seguiram para a confirmação de sua expressão por qRT-PCR. Destes, selecionamos o miRNA-29c para que fosse realizada a modulação in vivo em SHR jovens. Foi realizada injeção cardíaca intramuscular de partículas de vetor lentiviral para a superexpressão do miRNA-29c. Foram testadas duas doses: baixa (B), 0,6x109 pv/animal e alta (A), 3x109 pv/animal; e por dois períodos de tratamento: 7 e 14 dias. Foi avaliada a expressão de GFP em fígado e coração por western blott para observar a eficiência da transdução viral in vivo. Os efeitos do tratamento na pressão arterial (PA) foram analisados por pletismografia de cauda; na HC pela razão VE/PC (peso do ventrículo esquerdo/peso corporal), peso do coração/PC e (cor/PC), e pelo diâmetro de cardiomiócitos (dCMO) por histologia. qRT-PCR foi utilizado para investigar a expressão do miRNA-29c e seus alvos, colágeno do tipo I e do tipo III (COLIAI e COLIIIAI). O conteúdo de colágeno também foi medido por análise histológica (picrossírius), pela fração volumétrica de colágeno (% col), e pela concentração de OHprolina no VE. Os grupos que receberam baixa dose das partículas lentivirais foram positivos para GFP em coração e fígado, tendo sido assumida a dose baixa como eficiente para futuras transduções. Todos os grupos tratados apresentaram aumento da expressão do miRNA-29c. A expressão gênica do COLIAI diminuiu para os grupos tratados o que não ocorreu para o COLIIIAI. A fração volumétrica foi menor em todos os grupos tratados o que mostra evidência que o tratamento foi eficaz para diminuir a concentração de colágeno cardíaco. Houve diminuição no cor/PC de 7-11% para os grupos SHR7A e SHR7B, que foi concatenada com um aumento no dCMO, com diminuição da fibrose. Nossos resultados sugerem, portanto, que o tratamento com o miRNA29c induz remodelamento cardíaco benéfico, abrindo perspectivas para investigações adicionais sobre terapias antifibróticas para doenças cardiovascularesBoth aerobic exercise training (ET) and Hypertension (HY) induce different cardiac hypertrophy (CH) phenotypes which molecular differences and may lead to new targets for therapies in cardiovascular disease, as microRNAs (miRNAs). We selected 15 miRNAS that were changed by ET from miRNAarray data and compared them with other from HY miRNAarray data. Four miRNAs were selected for qRT-PCR confirmation: miRNA-27a, 27b, 126 e 29c. Among then, miRNA 29c was choosen to be modulated by lentiviral vector due its role in fibrosis regulation. Intramuscular cardiac injection of the lentiviral vector particles was performed following two doses; low-dose , 0,6x109 vp/rat and high 3x109 vp/rat; and for two different times (7 and 14 days). The transduction efficiency was assessed by GFP expression by western blot. Blood pressure (BP) was measured by caudal pletysmography, CH was analysed by ratio LVw/BW (left ventricle weight/body weight), heartw/BW (heart weight/body weight) and by cardiomyocyte diameter (dCMO). qRT-PCR was used to assess miRNA-29c expression and its targets COLIAI and COLIIIAI gene expression. The LV collagen content was assessed by histology (Picrossirius red), by collagen volume fraction, and by Hydroxiproline concentration. Both groups that received the lowe doses were GFP positive in the heart and liver tissue,We assumed that low doses were better for future in vivo transduction. BP did not increase to SHR14A and SHR14B, what did not occurred to the 7 days groups. The miRNA-29c expression increased in all treated groups versus their control (CSI). COLIAI expression decreased in treated groups, while COLIIIAI did not change. Collagen volume fraction decreased in all treated groups, which shows that the treatment was efficient to decrease the cardiac collagen. Heart/BW decreased 7-11% in SHR14B and SHR14A and there were an increase in dCMO in all treated groups, that shows that cardiac remodeling of treated SHR included an increase in size of CMO and a decrease in cardiac fibrosis Our data suggests that there is a beneficial cardiac remodeling after treatment with miRNA-29c, which opens perspective for further investigation of antifibrotic therapies for cardiovascular diseas
    corecore