20 research outputs found
Effect of Molecular Organization on the Properties of Fractionated Lignin-Based Thiol–Ene Thermoset Materials
In this study, the combination of sequential solvent fractionation of technical Kraft lignin was followed by allylation of most OH functionalities to give highly functional thermoset resins. All lignin fractions were highly functionalized on the phenolic (≥95%) and carboxylic acid OH (≥85%) and to a significant extent on the aliphatic OH moieties (between 43 and 75%). The resins were subsequently cross-linked using thiol–ene chemistry. The high amount of allyl functionalities resulted in a high cross-link density. Dynamic mechanical analysis measurements showed that the thioether content, directly related to the allyl content, strongly affects the performance of these thermosets with a glass transition temperature () between 81 and 95 °C and with a storage modulus between 1.9 and 3.8 GPa for all thermosets. The lignin fractions and lignin-based thermosets’ morphology, at the nanoscale, was studied by wide-angle X-ray scattering measurements. Two π–π stacking interactions were observed: sandwich (≈4.1–4.7 Å) and T-shaped (≈5.5–7.2 Å). The introduction of allyl functionalities weakens the T-shaped π–π stacking interactions. A new signal corresponding to a distance of ≈3.5 Å was observed in lignin-based thermosets, which was attributed to a thioether organized structure. At the same time, a lignin superstructure was observed with a distance/size corresponding to 7.9–17.5 Å in all samples
Impact of lignin source on the performance of thermoset resins
A series of different technical hardwood lignin-based resins have been successfully synthesized, characterized, and utilised to produce thiol-ene thermoset polymers. Firstly, technical lignin was fractionated and allylated, whereafter it was crosslinked with a trifunctional thiol. Structural and morphological characteristics of the lignin fractions were studied by H NMR, P NMR, SEC, FTIR, DSC, TGA, and WAXS. The hardwood lignin fractions have a high content of C5-substituted OH groups. The WAXS studies on lignin fractions revealed the presence of two π-π stacking conformations, sandwiched (4.08–4.25 Å) and T-shaped (6.52–6.91 Å). The presence of lignin superstructures with distances/sizes between 10.5 and 12.8 Å was also identified. The curing reaction of the thermosets was investigated by RT-FTIR. Almost all thermosets (excepting one fraction) reached 95% of the thiol conversion in less than 17 h, revealing the enhanced reactivity of the allylated hardwood lignin samples.
The mechanical properties of the thermosets were investigated by DMA. The curing performance, as well as the final thermoset properties, have been correlated to variations in chemical composition and morphological differences of lignin fractions. The described results clearly demonstrate that technical hardwood lignins can be utilized for these applications, but also that significant differences compared to softwood lignins have to be considered for material design
Design of Hygroscopic Bioplastic Products Stable in Varying Humidities
Hygroscopic biopolymers like proteins and polysaccharides suffer from humidity-dependent mechanical properties. Because humidity can vary significantly over the year, or even within a day, these polymers will not generally have stable properties during their lifetimes. On wheat gluten, a model highly hygroscopic biopolymer material, it is observed that larger/thicker samples can be significantly more mechanically stable than thinner samples. It is shown here that this is due to slow water diffusion, which, in turn, is due to the rigid polymer structure caused by the double-bond character of the peptide bond, the many bulky peptide side groups, and the hydrogen bond network. More than a year is required to reach complete moisture saturation (approximate to 10 wt.%) in a 1 cm thick plate of glycerol-plasticized wheat gluten, whereas this process takes only one day for a 0.5 mm thick plate. The overall moisture uptake is also retarded by swelling-induced mechanical effects. Hence, hygroscopic biopolymers are better suited for larger/thicker products, where the moisture-induced changes in mechanical properties are smeared out over time, to the extent that the product remains sufficiently tough over climate changes, for example, throughout the course of a year
An Inverse Thermogelling Bioink Based on an ABA-Type Poly(2-oxazoline) Amphiphile
Hydrogels are key components in several biomedical research areas such as drug delivery, tissue engineering, and biofabrication. Here, a novel ABA-type triblock copolymer comprising poly(2-methyl-2-oxazoline) as the hydrophilic A blocks and poly(2-phenethyl-2-oxazoline) as the aromatic and hydrophobic B block is introduced. Above the critical micelle concentration, the polymer self-assembles into small spherical polymer micelles with a hydrodynamic radius of approx 8-8.5 nm. Interestingly, this specific combination of hydrophilic and hydrophobic aromatic moieties leads to rapid thermoresponsive inverse gelation at polymer concentrations above a critical gelation concentration (20 wt %) into a macroporous hydrogel of densely packed micelles. This hydrogel exhibited pronounced viscoelastic solid-like properties, as well as extensive shear-thinning, rapid structure recovery, and good strain resistance properties. Excellent 3D-printability of the hydrogel at lower temperature opens a wide range of different applications, for example, in the field of biofabrication. In preliminary bioprinting experiments using NIH 3T3 cells, excellent cell viabilities of more than 95% were achieved. The particularly interesting feature of this novel material is that it can be used as a printing support in hybrid bioink systems and sacrificial bioink due to rapid dissolution at physiological conditions.Peer reviewe
Sputter-deposited TiO thin film as a buried interface modification layer for efficient and stable perovskite solar cells
Despite perovskite solar cells (PSCs) based on a SnO2 hole-blocking layer (HBL) are achieving excellent performance, the non-perfect buried interface between the SnO2 HBL and the perovskite layer is still an obstacle in achieving further improvement in power conversion efficiency (PCE) and stability. The poor morphology with numerous defects and the energy level mismatch at the buried interface constrain the open circuit voltage and cause instability. Herein, a sputter-deposited TiOx thin film is used as a buried interface modification layer to address the aforementioned issues. Utilizing in situ grazing-incidence small-angle X-ray scattering (GISAXS) during the sputter deposition, we monitor and unveil the growth process of the TiOx thin film, identifying a 10 nm thickness optimum. The defects at the buried interface are passivated through tuning the growth, leading to a suppressed non-radiative recombination and improved PCE (from 22.19 % to 23.93 %). The evolution of the device performance and the degradation process of PSCs using operando grazing-incidence wide-angle X-ray scattering (GIWAXS) under the protocol ISOS-L-1I explains the enhanced stability introduced by the buried interface modification via a sputter-deposited TiOx thin layer. The perovskite decomposition process and the detrimental formation of PbI2 are both slowed down by the TiOx thin layer
Aggregationsverhalten von Pluronic P123 in Lösung und an Grenzflächen bei hohen Temperaturen nahe des Trübungspunktes
This thesis aims to investigate the form-phase diagram of aqueous solutions of the triblock copolymer Pluronic P123 focusing on its high-temperature phases. P123 is based on polyethylene as well as polypropylene oxide blocks and shows a variety of di erent temperaturedependent micelle morphologies or even lyotropic liquid crystal phases in aqueous solutions. Besides the already well-studied spherical aggregates at intermediate temperatures, the size and internal structure of both worm-like and lamellar micelles, which appear near the cloud point, is determined using light, neutron and X-ray scattering. By combining the results of time-resolved dynamic light as well as small-angle neutron and X-ray scattering experiments, the underlying structural changes and kinetics of the sphere-to-worm transition were studied supporting the random fusion process, which is proposed in literature. For temperatures near the cloud point, it was observed that aqueous P123 solutions below the critical crystallization concentration gelate after several hours, which is linked to the presence and structure of polymeric surface layers on the sample container walls as shown by neutron re ectometry
measurements. Using a hierarchical model for the lamellar micelles including their periodicity as well as domain and overall size, it is possible to unify the existing results in literature and propose a direct connection between the near-surface and bulk properties of P123 solutions at temperatures near the cloud point.Ziel dieser Dissertation ist die Untersuchung des Form-Phasendiagrams des Dreiblock-Co- polymers Pluronic P123 mit dem besonderen Fokus auf dessen Phasenverhalten bei hohen Temperaturen. P123 besteht aus Polyethylen- und Polypropylenoxid-Blöcken und zeigt in wässriger Lösung vielfältige, temperaturabhängige Mizellformen oder sogar Flüssigkristallphasen. Neben den bereits intensiv untersuchten sphärischen Aggregaten bei mittleren Temperaturen, werden die Größen und inneren Strukturen der wurmartigen und lamellearen Aggregate mittels Licht-, Neutronen- und Röntgenstreumethoden untersucht, welche nahe des Trübungspunktes der Lösungen auftreten. Durch die Kombination von zeitaufgelösten dynamischen Licht- und Kleinwinkelstreuung-Experimenten wurden die strukturellen Änderungen und kinetischen Prozesse während des Kugel-Wurm-Übergangs untersucht, welche den bereits in der Literatur vorgeschlagenen zufälligen Fusionsprozess weiter bestätigen. Es wurde beobachtet, dass wässrige P123-Lösungen unterhalb der kritischen Kristallisationskonzentration nach mehreren Stunden gelieren, was durch Neutronenreflektometrie mit dem Auftreten und der Struktur von oberflächennahen Monolagen auf den Messzellwänden in Verbindung gebracht wurde. Wenn ein hierarchisches Model für die lamellaren Mizellen verwendet wird, das deren Periodizität, Domänen- und Gesamtgröße berücksichtigt, ist es außerdem möglich, die bisherigen Ergebnisse in der Literatur zu vereinigen und eine direkte Verbindung zwischen dem Aggregationsverhalten von P123 auf Oberflächen und in Lösung bei Temperaturen nahe des Trübungspunktes zu ziehen
Probing the Complex Loading-Dependent Structural Changes in Ultrahigh Drug-Loaded Polymer Micelles by Small-Angle Neutron Scattering
Drug-loaded polymer micelles or nanoparticles are being continuously explored in the fields of drug delivery and nanomedicine. Commonly, a simple core-shell structure is assumed, in which the core incorporates the drug and the corona provides steric shielding, colloidal stability, and prevents protein adsorption. Recently, the interactions of the dissolved drug with the micellar corona have received increasing attention. Here, using small-angle neutron scattering, we provide an in-depth study of the differences in polymer micelle morphology of a small selection of structurally closely related polymer micelles at different loadings with the model compound curcumin. This work supports a previous study using solid-state nuclear magnetic resonance spectroscopy and we confirm that the drug resides predominantly in the core of the micelle at low drug loading. As the drug loading increases, neutron scattering data suggests that an inner shell is formed, which we interpret as the corona also starting to incorporate the drug, whereas the outer shell mainly contains water and the polymer. The presented data clearly shows that a better understanding of the inner morphology and the impact of the hydrophilic block can be important parameters for improved drug loading in polymer micelles as well as provide insights into the structure-property relationship.Peer reviewe
Probing the Complex Loading Dependent Structural Changes in Ultra-High Drug Loaded Polymer Micelles by Small-Angle Neutron Scattering
Drug loaded polymer micelles or nanoparticles are being continuously explored in the fields of drug delivery and nanomedicine. Commonly, a simple core-shell structure is assumed, in which the core incorporates the drug and the corona provides steric shielding, colloidal stability, and prevents protein adsorption. Recently, the interactions of the dissolved drug with the micellar corona have received increasing attention. Here, using small-angle neutron scattering, we provide an in-depth study of the differences in polymer micelle morphology of a small selection of structurally closely related polymer micelles at different loadings with the model compound curcumin. This work supports a previous study using solid state nuclear magnetic resonance spectroscopy and we confirm that the drug resides predominantly in the core of the micelle at low drug loading. As the drug loading increases, neutron scattering data suggests that an inner shell is formed, which we interpret as the corona also starting to incorporate the drug, whereas the outer shell mainly contains water and the polymer. The presented data clearly shows that a better understanding of the inner morphology and the impact of the hydrophilic block can be important parameters for improved drug loading in polymer micelles as well as provide insights into structure-property relationships.<br /
Poly(sobrerol methacrylate) Colloidal Inks Sprayed onto Cellulose Nanofibril Thin Films for Anticounterfeiting Applications
The colloidal layer formation on porous materials is a crucial step for printing and applying functional coatings, which can be used to fabricate anticounterfeiting paper. The deposition of colloidal layers and subsequent thermal treatment allows for modifying the hydrophilicity of the surface of a material. In the present work, wood-based colloidal inks are applied by spray deposition on spray-deposited porous cellulose nanofibrils (CNF) films. The surface modification by thermal annealing of the fabricated colloid-cellulose hybrid thin films is investigated in terms of layering and hydrophobicity. The polymer colloids in the inks are core–shell nanoparticles with different sizes and glass transition temperatures (T), thus enabling different and low thermal treatment temperatures. The ratio between the core polymers, poly(sobrerol methacrylate) (PSobMA), and poly(-butyl methacrylate) (PBMA) determines the T and hence allows for tailoring of the T. The layer formation of the colloidal inks on the porous CNF layer depends on the imbibition properties of the CNF layer which is determined by their morphology. The water adhesion of the CNF layer decreases due to the deposition of the colloids and thermal treatment except for the colloids with a size smaller than the void size of the porous CNF film. In this case, the colloids are imbibed into the CNF layer when T of the colloids is reached and the polymer chains transit in a mobile phase. Tailored aggregate and nanoscale-embedded hybrid structures are achieved depending on the colloid properties. The imbibition of these colloids into the porous CNF films is verified with grazing incidence small-angle X-ray scattering. This study shows a route for tuning the nanoscale structure and macroscopic physicochemical properties useful for anticounterfeiting paper
Multifunctional Cellulose Nanofibrils–GdF Nanoparticles Hybrid Gel and Its Potential Uses for Drug Delivery and Magnetic Resonance Imaging
A multifunctional hybrid gel based on cellulose nanofibrils (CNFs) was developed by grafting on its surface stearyl acrylate (PSA) and gadolinium(III) fluoride nanoparticles (GdF NPs) via Cu-mediated surface-initiated radical polymerization (SET-LRP) while encapsulating antimicrobial peptides in it. GdF NPs were first surface-modified with 11-phosphonoundecyl acrylate (PDA) to participate in the SET-LRP and cross-linked the grafted polymer-modified CNF. Several characterizations of the hybrid material (GdF–PSA-CNF) were carried out, such as Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), rheology, and microscopic analyses. The grafted PSA and cross-linked GdF NPs created sophisticated networks in the CNF-based gel, presenting outstanding rheological properties and promising three-dimensional (3D) printability of this hybrid material (GdF–PSA-CNF). The nanostructures of GdF NPs and their incorporated CNF species were characterized via small-angle X-ray scattering (SAXS). In addition, due to the unique intrinsic property of the GdF nanoparticles, properties for magnetic resonance imaging (MRI) of GdF–PSA-CNF were investigated, showing the potential application as a contrast agent. Finally, the encapsulation of the antimicrobial peptides added another function to the hybrid material, evaluated by an antimicrobial test against methicillin-resistant Staphylococcus aureus (MRSA) in vitro