212 research outputs found

    Reactive Systems over Cospans

    No full text
    The theory of reactive systems, introduced by Leifer and Milner and previously extended by the authors, allows the derivation of well-behaved labelled transition systems (LTS) for semantic models with an underlying reduction semantics. The derivation procedure requires the presence of certain colimits (or, more usually and generally, bicolimits) which need to be constructed separately within each model. In this paper, we offer a general construction of such bicolimits in a class of bicategories of cospans. The construction sheds light on as well as extends Ehrig and Konigā€™s rewriting via borrowed contexts and opens the way to a unified treatment of several applications

    Deriving Bisimulation Congruences: A 2-Categorical Approach

    Get PDF
    We introduce G-relative-pushouts (GRPO) which are a 2-categorical generalisation of relative-pushouts (RPO). They are suitable for deriving labelled transition systems (LTS) for process calculi where terms are viewed modulo structural congruence. We develop their basic properties and show that bisimulation on the LTS derived via GRPOs is a congruence, provided that sufficiently many GRPOs exist. The theory is applied to a simple subset of CCS and the resulting LTS is compared to one derived using a procedure proposed by Sewell

    Deriving Bisimulation Congruences using 2-Categories

    No full text
    We introduce G-relative-pushouts (GRPO) which are a 2-categorical generalisation of relative-pushouts (RPO). They are suitable for deriving labelled transition systems (LTS) for process calculi where terms are viewed modulo structural congruence. We develop their basic properties and show that bisimulation on the LTS derived via GRPOs is a congruence, provided that sufficiently many GRPOs exist. The theory is applied to a simple subset of CCS and the resulting LTS is compared to one derived using a procedure proposed by Sewell

    A Congruence for Petri Nets

    Get PDF
    We introduce a way of viewing Petri nets as open systems. This is done by considering a bicategory of cospans over a category of p/t nets and embeddings. We derive a labelled transition system (LTS) semantics for such nets using GIPOs and characterise the resulting congruence. Technically, our results are similar to the recent work by Milner on applying the theory of bigraphs to Petri Nets. The two main differences are that we treat p/t nets instead of c/e nets and we deal directly with a category of nets instead of encoding them into bigraphs

    Causality in the Semantics of Esterel: Revisited

    Full text link
    We re-examine the challenges concerning causality in the semantics of Esterel and show that they pertain to the known issues in the semantics of Structured Operational Semantics with negative premises. We show that the solutions offered for the semantics of SOS also provide answers to the semantic challenges of Esterel and that they satisfy the intuitive requirements set by the language designers

    Analysis of Boolean Equation Systems through Structure Graphs

    Full text link
    We analyse the problem of solving Boolean equation systems through the use of structure graphs. The latter are obtained through an elegant set of Plotkin-style deduction rules. Our main contribution is that we show that equation systems with bisimilar structure graphs have the same solution. We show that our work conservatively extends earlier work, conducted by Keiren and Willemse, in which dependency graphs were used to analyse a subclass of Boolean equation systems, viz., equation systems in standard recursive form. We illustrate our approach by a small example, demonstrating the effect of simplifying an equation system through minimisation of its structure graph

    CARTOGRAPHER: A tool for string diagrammatic reasoning

    Get PDF
    We introduce cartographer, a tool for editing and rewriting string diagrams of symmetric monoidal categories. Our approach is principled: the layout exploits the isomorphism between string diagrams and certain cospans of hypergraphs; the implementation of rewriting is based on the soundness and completeness of convex double-pushout rewriting for string diagram rewriting

    Rewriting modulo symmetric monoidal structure

    Get PDF
    String diagrams are a powerful and intuitive graphical syntax for terms of symmetric monoidal categories (SMCs). They find many applications in computer science and are becoming increasingly relevant in other fields such as physics and control theory. An important role in many such approaches is played by equational theories of diagrams, typically oriented and applied as rewrite rules. This paper lays a comprehensive foundation for this form of rewriting. We interpret diagrams combinatorially as typed hypergraphs and establish the precise correspondence between diagram rewriting modulo the laws of SMCs on the one hand and double pushout (DPO) rewriting of hypergraphs, subject to a soundness condition called convexity, on the other. This result rests on a more general characterisation theorem in which we show that typed hypergraph DPO rewriting amounts to diagram rewriting modulo the laws of SMCs with a chosen special Frobenius structure. We illustrate our approach with a proof of termination for the theory of non-commutative bimonoids

    Confluence of graph rewriting with interfaces

    Get PDF
    For terminating double-pushout (DPO) graph rewriting systems confluence is, in general, undecidable. We show that confluence is decidable for an extension of DPO rewriting to graphs with interfaces. This variant is important due to it being closely related to rewriting of string diagrams. We show that our result extends, under mild conditions, to decidability of confluence for terminating rewriting systems of string diagrams in symmetric monoidal categories

    Deconstructing Lawvere with distributive laws

    Get PDF
    PROs, PROPs and Lawvere categories are related notions adapted to the study of algebraic structures borne by an object in a category: PROs are monoidal, PROPs are symmetric monoidal and Lawvere categories are cartesian. This paper connects the three notions using Lack's technique for composing PRO(P)s via distributive laws. We show that Lawvere categories can be seen as the composite PROP , where expresses the algebraic structure in linear form and express the ability of copying and discarding them. In turn the PROP can be decomposed in terms of PROs as where expresses the ability of permuting variables and is the PRO encoding the syntactic structure without permutations
    • ā€¦
    corecore