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Abstract. For terminating double-pushout (DPO) graph rewriting systems con-
fluence is, in general, undecidable. We show that confluence is decidable for an
extension of DPO rewriting to graphs with interfaces. This variant is important
due to it being closely related to rewriting of string diagrams. We show that our
result extends, under mild conditions, to decidability of confluence for terminat-
ing rewriting systems of string diagrams in symmetric monoidal categories.
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1 Introduction

Confluence and termination are some of the most important properties of rewriting sys-
tems. For term rewriting, both confluence [3] and termination [27] are, in general, un-
decidable. However, for systems known to be terminating, confluence is decidable. The
key, celebrated property observed by Knuth and Bendix [33] is that the system is con-
fluent exactly when all its critical pairs are joinable.

In recent years, an increasing amount of attention has been given to rewriting struc-
tures that are richer than mere terms, many of which can be seen as various flavours
(including higher-dimensional) of graphs. Here, unfortunately, the status of confluence
is murky because old certainties of critical pair analysis fail: Plump [42], working in
the well-established framework of the double-pushout (DPO) graph rewriting mecha-
nism [20], showed that joinability of critical pairs does not entail confluence, and that
confluence of terminating DPO rewriting systems is, in general, undecidable.

In this paper we focus on an extension of DPO, called DPO with interfaces. This
variant has emerged in several research threads, including rewriting with borrowed con-
texts [19], encodings of process calculi [24,5], connecting DPO rewriting systems with
computads in cospans categories [25,44] and, more recently, for checking the equiva-
lence of terms of symmetric monoidal theories [4]. Our key observation is that for DPO
rewriting with interfaces, the Knuth-Bendix property holds and therefore confluence of
a terminating system can be decided by checking whether its critical pairs are joinable.
More precisely, if some mild assumptions related to the computability of performing
rewriting steps on the underlying notion of term are satisfied, our result holds for the
most general venue available for DPO rewriting, namely, adhesive categories [34].
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Our results do not falsify Plump’s: in DPO with interfaces, rather than rewriting
graphs, one rewrites graph morphisms J → G, thought of as a graph G with interface J.
The latter allows one to “glue” G to other graphs, analogously to how variables allow a
single term to apply to a variety of contexts via substitution. Plump’s result, in the light
of our analysis, states that it is undecidable to check whether rewriting is confluent for
all morphisms 0 → G. Intuitively, the failure of Knuth-Bendix for such morphisms is
due to the loss of expressive power of critical pairs, when deprived of an interface.

This reveals an attractive analogy with term rewriting: morphisms 0 → G – repre-
senting graphs that cannot be non-trivially attached to other graphs, since they have an
empty interface – correspond to ground terms, that cannot be extended since they have
no variables. Now, the property that Plump showed to be undecidable should be com-
pared to ground confluence for term rewriting [40], i.e., confluence with respect to all
ground terms. And in fact, this property is undecidable for terminating term rewriting
systems [30]. Summarising, for both term and DPO rewriting with interfaces, conflu-
ence of terminating rewriting systems is decidable, while ground confluence is not.

Terminating term rewriting system Terminating DPO system
Ground confluence undecidable (Kapur et al. [30]) undecidable (Plump [42])

Confluence decidable (Knuth and Bendix [33]) decidable (this paper)

Our interest in DPO rewriting with interfaces is motivated by symmetric monoidal
theories (SMTs) that appear in different fields of computer science, like concurrency
theory [37,11,47], quantum information [15,16], and systems theory [6,7,1,23], just to
mention a few. The terms of an SMT enjoy an efficient graphical representation by
means of string diagrams [29,45], in the sense that structural equations are “baked
into” the representation. Rewriting at the diagrammatic level can be used to determine
equality of terms, i.e. the word problem for an SMT. While rewriting of string diagrams
has been broadly studied from a foundational point of view (e.g. using computads [48]
or polygraphs [12]), its implementation has thus far received less attention.

In [4] we showed that rewriting of string diagrams, representing terms of an SMT,
can be soundly and effectively encoded into DPO rewriting with interfaces. This en-
ables us to reuse the main result of this paper to study confluence of rewriting of string
diagrams. This problem is known to be particularly challenging: for example a directed
form of the Yang-Baxter equation generates infinitely many critical pairs [35,39].

We show that this issue can be avoided by using DPO with interfaces, and that con-
fluence is decidable. We identify two classes of terminating rewriting systems for which
confluence can be decided by means of critical pair analysis. The first one concerns
SMTs containing a special Frobenius structure [14] (yielding categories alternatively
called well-supported compact closed [13], p- and dgs-monoidal [25,9], or recently
hypergraph categories [22,31]). For arbitrary SMTs, not necessarily equipped with a
special Frobenius structure, we identify a second class of rewriting systems for which
confluence can be decided. The rules of these systems need to satisfy a simple con-
dition that we call left-connectedness. Many rewrite systems arising from SMTs (e.g.,
[35,26,21]), including aforementioned Yang-Baxter rule, enjoy this property. Amongst
these, we consider a rewriting system for non-commutative bimonoids that has been
shown to be terminating in [4]. We exploit our approach to prove that it is also conflu-
ent and thus conclude that equivalence of non-commutative bimonoids is decidable.
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Related work. For ordinary DPO rewriting, a variant of the Knuth-Bendix property
holds with respect to a stronger notion of joinability for critical pairs [42]. Moreover,
confluence is decidable whenever all critical pairs satisfy a certain syntactic condition
called coverability [43]. Both these results however refer to confluence for graphs with-
out interfaces, namely ground confluence. Instead, our same notion of confluence has
been studied in [8] in the setting of Milner’s reactive systems. By instantiating Propo-
sition 22 in [8] to the category of input-linear cospans (of hypergraphs) and by using
the results relating borrowed context DPO rewriting with reactive systems over cospans
in [46], one obtains a variant of our Theorem 19. One restriction of that approach is that
the matches are required to be mono, which rules out our applications to SMTs.

2 Background

Notation. The composition of arrows f : a→ b, g : b→ c in a category C is written as
f ; g. For C symmetric monoidal, ⊕ is its monoidal product and σa,b : a ⊕ b → b ⊕ a is
the symmetry for objects a, b ∈ C.

2.1 DPO rewriting

Adhesive categories and (typed) hypergraphs. In order not to restrict ourselves to any
one concrete model of graphs, we work with adhesive categories [34]. Adhesive cat-
egories are relevant because they have well-behaved pushouts along monomorphisms,
and for this reason they are convenient as ambient categories for DPO rewriting.

An important example is the category of finite directed hypergraphs Hyp. An object
G of Hyp is a hypergraph with finite set of nodes G? and for each k, l ∈ N finite set of
hyperedges Gk,l with k (ordered) sources and l (ordered) targets, i.e. for each 0 ≤ i < k
there is the ith source map si : Gk,l → G?, and for each 0 ≤ j < l, the jth target map
t j : Gk,l → G?. The arrows of Hyp are homomorphisms: functions G? → H? such that
for each k, l, Gk,l → Hk,l they respect the source and target maps in the obvious way. The
seasoned reader will recognise Hyp as a presheaf topos, and as such, it is adhesive [34].
We shall visualise hypergraphs as follows: is a node and

is an hyperedge, with ordered tentacles attached to the
left boundary linking to sources and those on the right linking
to targets. An example is on the right.

A signature Σ consists of a set of generators o : n → m with arity n and coarity m
where m, n ∈ N. Any signature Σ can be considered as a hypergraph with a single node,
in the obvious way. We can then express Σ-typed hypergraphs as the objects of the slice
category Hyp/Σ, denoted by HypΣ , which is adhesive, since
adhesive categories are closed under slice [34]. Σ-typed hy-
pergraphs are drawn by labeling hyperedges with generators
in Σ, as on the right.

o2

o1o2

DPO rewriting. We recall the DPO approach [20] to rewriting in an adhesive category
C. A DPO rule is a span L←− K −→ R in C. A DPO system R is a finite set of DPO rules.
Given objects G and H in C, we say that G rewrites into H —notation G ⇒R H— if
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there esist L ←− K −→ R in R, object C and morphisms such that the squares below are
pushouts. A derivation from G into H is a sequence of such rewriting steps.

L
m ��

K
��

q p

oo // R
��

G Coo // H

The arrow m : L → G is called a match of L in G. A rule L ←− K −→ R is said to be left-
linear if the morphism K → L is mono. In this case, the matching m fully determines
the graphs C and H, i.e., for fixed a rule and a matching there is a unique H such that
G ⇒R H. Here, by unique, we mean unique up-to isomorphism. More generally, the
rewriting steps will always be up-to iso: in a step G ⇒R H, G and H should not be
thought of as single graphs but rather as equivalence classes of isomorphic graphs.

Undecidability of confluence. In DPO rewriting, the confluence of terminating systems
is not decidable, even if we restrict to left-linear rules.

Theorem 1 ([42]). Confluence of terminating DPO systems over HypΣ is undecidable.

Indeed, critical pair analysis for traditional DPO systems fails: for terminating DPO
systems, joinability of critical pairs does not necessarily imply confluence.

Definition 2 (Pre-critical pair and joinability). Let R be a DPO system with rules
L1 ←− K1 −→ R1 and L2 ←− K2 −→ R2. Consider two derivations with common source S

R1

��

K1oo

q ��

// L1

p

f1

��

L2f2

�� q

K2oo

�� p

// R2

��
H1 C1oo // S C2oo // H2

We say that H1 ⇐ S ⇒ H2 is a pre-critical pair if [ f1, f2] : L1 + L2 → S is epi; it is
joinable if there exists W such that H1 ⇒

∗ W ∗⇐H2.

Intuitively, in a pre-critical pair S should not be bigger than L1 +L2. In a critical pair,
L1 and L2 must additionally overlap in S , so that the two rewriting steps are not parallel
independent (see e.g. [17]). For the purposes of this paper, this restriction is immaterial.
We stick to pre-critical pairs in our results, as proofs are less tedious. However, for the
sake of succinctness, most of the examples only display the critical pairs. For a pre-
critical pair which is not a critical pair, see for instance the first picture of Section 5.

Example 3 ([42]). Consider a DPO system R consisting of the following two rules,
where we labeled nodes with numbers in order to make the graph morphisms explicit.

0

b
1

0
a

1 0 1
0

b

1

0
a

1 0 1

Amongst the several pre-critical pairs, only the following two have non-trivial overlap.

b
⇐ a ⇒

b b
⇐

a
⇒

b

4



Both are obviously joinable. However, R is not confluent, as witnessed by the following

b

b

⇐
a

b ⇒
b

b

DPO rewriting with interfaces. Morphisms G ←− J will play a special role in our expo-
sition. When C is HypΣ , we will call them (hyper)graphs with interface. The intuition
is that G is a hypergraph and J is an interface that allows G to be “glued” to a context.

Given G ← J and H ← J in C, G rewrites into H with interface J — notation
(G ←− J) ⇒R (H ←− J) — if there exist rule L ←− K −→ R in R, object C and morphisms
such that the diagram below commutes and the squares are pushouts.

L
m ��

K
��

q p

oo // R
��

G Coo // H

J

OO ::dd

Hence, the interface J is preserved by individual rewriting steps.
When C has an initial object 0 (for instance, in HypΣ 0 is the empty hypergraph),

ordinary DPO rewriting can be considered as a special case, by taking J to be 0.
Like for traditional DPO, rewriting steps are modulo isomorphism: G1 ← J : f1 and

G2 ← J : f2 are isomorphic if there is an isomorphism ϕ : G1 → G2 with f1 ; ϕ = f2.

Example 4. Consider the system R from Example 3 and 0 1
a

0 1 , a graph with

interface (henceforth depicted in grey). It is the source of two rewriting steps
0

b
1

0 1

 ⇐

 0 1
a

0 1

 ⇒

 b
0

1

0 1

 (1)

that are not joinable. Intuitively, the main difference with Example 3 is that here the in-
terface {0, 1} allows one to “look inside” the graph and distinguish between the two
nodes. Notice that if (1) were considered as a critical pair, the counterexample of
Plump [42] (Example 3) would not work. This is the starting observation for our work:
in Section 3 we will introduce pre-critical pairs for rewriting with interfaces and we will
show that, as in term rewriting, joinability of pre-critical pairs entails confluence.

2.2 PROP rewriting

SMTs and PROPs. A uniform way to express an algebraic structure within a symmetric
monoidal category is with a symmetric monoidal theory (SMT). A (one-sorted) SMT
is a pair (Σ, E) where Σ is a signature defined as in Section 2.1. The set of Σ-terms is
obtained by combining generators in Σ, the unit id : 1→ 1 and the symmetry σ1,1 : 2→
2 with ; and ⊕. That means, given Σ-terms t : k → l, u : l→ m, v : m→ n, one constructs
new Σ-terms t ; u : k → m and t⊕v : k+m→ l+n. The set E of equations contains pairs
(t, t′) of Σ-terms, with the requirement that t and t′ have the same arity and coarity.
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=

=

=

=

=

=

=

=

Fig. 1. The equations EF of special Frobenius monoids.

Just as ordinary (cartesian) algebraic theories have a categorical rendition as Law-
vere categories [28], the corresponding (linear6) notion for SMTs is a PROP [36] (pro-
duct and permutation category). A PROP is a symmetric strict monoidal category with
objects the natural numbers, where ⊕ on objects is addition. Morphisms between PROPs
are identity-on-objects strict symmetric monoidal functors. PROPs and their morphisms
form a category PROP. Any SMT (Σ, E) freely generates a PROP by letting the arrows
n → m be the Σ-terms n → m modulo the laws of symmetric monoidal categories and
the (smallest congruence containing the) equations t = t′ for any (t, t′) ∈ E.

We write SΣ to denote the PROP freely generated by (Σ,∅). There is a graphical
representation of the arrows of SΣ as string diagrams, which we now sketch, referring
to [45] for the details. A Σ-term n → m is pictured as a box with n ports on the left
and m ports on the right, which are ordered and referred to with top-down enumerations
1, . . . , n and 1, . . . ,m. Compositions via ; and ⊕ are drawn respectively as horizontal

and vertical juxtaposition, that means, t ; s is drawn st and t ⊕ s is drawn t
s .

There are specific diagrams for the Σ-terms responsible for the symmetries: these are
id1 : 1 → 1, represented as , the symmetry σ1,1 : 1 + 1 → 1 + 1, represented as

, and the unit object for ⊕, that is, id0 : 0 → 0, whose representation is an empty
diagram . Graphical representation for arbitrary identities idn and symmetries σn,m

are generated using the pasting rules for ; and ⊕. It will be sometimes convenient to
represent idn with the shorthand diagram n and, similarly, t : n→ m with mn t .

Example 5.
(a) A basic example is the theory (ΣM , EM) of commutative monoids. The signature

ΣM contains two generators: multiplication — which we depict : 2 → 1 —
and unit, represented as : 0 → 1. Equations in EM are given in the leftmost
column of Figure 1: they assert commutativity, associativity and unitality.

(b) An SMT that plays a key role in our exposition is the theory (ΣF , EF) of special
Frobenius monoids. The signature ΣF is as follows and EF is depicted in Figure 1.

{ : 2→ 1, : 0→ 1, : 1→ 2, : 1→ 0}

EF includes the theory of commutative monoids in the leftmost column. Dually,
the equations in the middle column assert that and form a cocommutative
comonoid. Finally, the two rightmost equations describe an interaction between
these two structures. We call Frob the PROP freely generated by (ΣF , EF).

6 In the sense that variables can neither be copied, nor discarded.
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(c) The theory of non-commutative bimonoids has signature ΣNB

{ : 2→ 1, : 0→ 1, : 1→ 2, : 1→ 0}

and the following equations ENB.

=

=

=

=
= =

=

==

=

=

=

=

=
= =

=

==

=

We call NB the PROP freely generated from (ΣNB, ENB). In [4], we showed that
the rewriting system that is obtained by orienting the equalities from left to right
terminates. In this paper, we will show that is also confluent. For this, it will be
convenient to use µ, η, ν, ε, respectively, to refer to the generators in ΣNB.

Rewriting in a PROP. Fix an arbitrary PROP X. A rewriting rule is a pair 〈l, r〉 where
l, r : i → j in X have the same domain and codomain. We say that i → j is the rule’s
type and sometimes write 〈l, r〉 : (i, j). A rewriting system R is a finite set of rules. Given
two arrows d, e : n→ m in X, d R e iff ∃〈l, r〉 : (i, j) ∈ R, c1 : n→ k + i, c2 : k + j→ n
such that d = c1 ; (idk ⊕ l) ; c2 and e = c1 ; (idk ⊕ r) ; c2, i.e., diagrammatically

d
n m

= l
c2c1

n
k

ji
m n me = c2c1

n
k

ji
m

r .

The following well-known example illustrates the subtlety of critical pair analysis
when rewriting in monoidal categories.

Example 6 (From [35], see also [39]). Fix Σ = {γ : 2 → 2} and consider the rewriting
system on SΣ consisting of the following rule:

γ γ

γ γ γ

γ (2)

A critical pair analysis yields an infinite number of critical pairs. Indeed, as shown
in [35,39], any diagram φ : 1 + m → 1 + n that does not decompose non-trivially into
φ = µ + ν for some µ, ν yields a critical pair

γ γ

γ

γ

γ

φ
⋮ ⋮γ

γ

φ
⋮ ⋮

γ γ

γ γ

γ

φ
⋮ ⋮

γ γ

γ

  

in which clearly there are two embeddings of the left-hand side of (2) (depicted in blue
and yellow, respectively, in a colour version of the paper) with an overlap (in green).
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In [38] this problem was solved by freely adding duals to monoidal categories. In
Section 4, we will show another solution based on our earlier work [4]: a translation
from PROPs to DPO rewriting with interfaces. The example below anticipates this en-
coding. It will be useful as a running example for the next section, which is devoted to
critical pair analysis and confluence in DPO rewriting with interfaces.

Example 7. Treating the rewriting system of Example 6 as DPO system over HypΣ
with γ : 2→ 2 ∈ Σ yields the following DPO rules.

γ γ

γ

0

1

2

3

4

5

0

1

2

3

4

5γ γ

γ
0

1

2

3

4

5

Below, we give a DPO derivation with interface (in grey), corresponding to a critical
pair from the family identified in Example 6.

γ

γ

φ
⋮ ⋮

0

1

2 5

6

7

8

9

10

11

γ γ

γ

0

1

2

3

4

5

γ γ

γ

6

7

8

9

10

11

0

1

2

3

4

5

0

1

2

3

4

5γ γ

γ

0

1

2

9

10

11

⋮ ⋮

6

7

8

9

10

11

6

7

8

9

10

11γ γ

γ

γ

γ

φ
⋮ ⋮

0

1

2 5

6

7

8

9

10

11
γ γ

γ

γ

γ

φ
⋮ ⋮

0

1

2

3

4

5

9

10

11

γ

γ

φ
⋮ ⋮

0

1

2

3

4

5

9

10

11γ γ

γ

γ γ

γ

γ

γ

φ
⋮ ⋮

0

1

2

3

4

5

6

7

8

9

10

11

3 Confluence for DPO rewriting with interfaces

Differently from Definition 2, when considering pre-critical pairs in the setting of DPO
with interfaces, the interface of the pre-critical pair plays a crucial role.

Definition 8 (Pre-critical pair with interface). Let R be a DPO system with rules
L1 ←− K1 −→ R1 and L2 ←− K2 −→ R2. Consider two derivations with source S ← J

R1

��

K1oo

q ��

// L1

p

f1

$$

L2
f2

zz q

K2oo

�� p

// R2

��
H1 C1oo // S C2oo // H2

J

ee
(†)

99 (3)
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We say that (H1 ←− J) ⇐ (S ←− J) ⇒ (H2 ←− J) is a pre-critical pair if [ f1, f2] : L1 +

L2 → S is epi and (†) is a pullback; it is joinable if there exists W ←− J such that
(H1 ←− J)⇒∗ (W ←− J) ∗⇐ (H2 ←− J).

Definition 8 augments Definition 2 with the interface J, given by “intersecting” C1
and C2. Intuitively, J is the largest interface that allows both the rewriting steps.

Example 9. Consider the pair of rewriting steps (1) in Example 4. This is a pre-critical
pair: the reader can check that the interface is indeed a pullback, constructed as in (†).
Observe moreover that this pair is not joinable.

Plump’s Example 3 shows that in ordinary DPO, joinability of pre-critical pairs does
not imply confluence. Our Example 9 shows that the argument does not work for DPO
with interfaces. Indeed, as we shall see in Theorem 19, in the presence of interfaces
joinability suffices for confluence. To prove it, we assume the following.

Assumption 10. Our ambient category C is assumed (1) to possess an epi-mono fac-
torisation system, (2) to have binary coproducts, pushouts and pullbacks, (3) to be ad-
hesive (4) with all the pushouts stable under pullbacks.

All of the above hold in any presheaf category. Additionally, all four are closed
under slice. It follows that HypΣ is an example of such a category. The final property
allows us to treat non left-linear rules: to this aim we need the following simple pushout
decomposition lemma (aka “mixed decomposition” from [2]).

Lemma 11. Suppose in the following diagram m is mono, (†) + (‡) is a pushout and
(‡) is a pullback. Then both (†) and (‡) are pushouts.

K
(†)��

// C′
(‡)��

// C
��

L // G′ m
// G

(4)

The following construction mimics [18]. It allows us to restrict –or “clip”– a DPO
rewriting step with match f : L→ G to any subobject of G′ through which f factors.

Construction 12 (One-step clipping). Suppose we have a DPO rewriting step as be-
low left, together with factorisation L −→ G′

m
−→ G where m is mono. As shown below

right, we get C′ by pulling back G′ −→ G ←− C and K → C′ by the universal property.

L

��

{{
K //oo

��

R

��
G′

m ## G C //oo H

L

��

{{
K //oo

{{

��

R

��
G′

m ##
C′oo

##
G C //oo H

By Lemma 11 the two leftmost squares are both pushouts. Next, H′ is the pushout of
C′ ←− K −→ R and H′ −→ H follows from its universal property.

L

��

{{
K //oo

{{

��

R

��

zz
G′

m ##
C′oo //

##
H′

$$
G C //oo H

9



By pushout pasting also the bottom-rightmost square is a pushout. Finally, observe that
C′ → C is mono since it is the pullback of m along C → G. This means that each of
the two squares in diagram below is, as well as being a pushout, also a pullback, since
each is a pushout along a mono in an adhesive category.

G′

m
��

C′

��

oo // H′

��
G Coo // H

Example 13. We use the clipping construction to restrict pairs of derivations with com-
mon source into pre-critical pairs. For example, consider the two DPO rewrite rules
illustrated in Example 7. We can factorise the two matches through their common im-
age, and clip, as illustrated below.

γ γ

γ

0

1

2

3

4

5

γ γ

γ

6

7

8

9

10

11

γ γ

γ

γ

γ

0

1

2

3

4

5

6

7

8

9

10

11

γ γ

γ

γ

γ

φ
⋮ ⋮

0

1

2

3

4

5

6

7

8

9

10

11

γ

γ

φ
⋮ ⋮

0

1

2 5

6

7

8

9

10

11

γ

γ

φ
⋮ ⋮

0

1

2

3

4

5

9

10

118

γ

γ

0

1

2

3

5

4

8
11

10

9

γ

γ

0

1

2 5

6

7

8

9

10

11

6

7

8

9

10

11

0

1

2

3

4

5

Note that the clipped derivations result with the two matches being jointly epi,
which is one of the properties of a pre-critical pair. This generalises: given two rewrit-
ing steps with common source (G1,1 ←− I)⇐ (G0 ←− I)⇒ (G1,2 ←− I), next construction
produces a pre-critical pair (G′1,1 ←− J′)⇐ (G0

′ ←− J′)⇒ (G′1,2 ←− J′) using clipping.

Construction 14 (Pre-critical pair extraction). Start with two rewrites from G0 ←− I

R1,1

��

K1,1oo

q ��

// L1,1

p

f1

%%

L1,2
f2

yy q

K1,2oo

�� p

// R1,2

��
G1,1 C1,1oo // G0 C1,2oo // G1,2

I

gg OO 77
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and factorise [ f1, f2] : L1,1 + L1,2 → G0 to obtain

L1,1

��

f1

  

L1,2

��

f2

~~

G′0_�
��

G0.

Next apply Construction 12 twice, obtaining

R1,1

��

||

K1,1oo

||

��

// L1,1

&&

))

L1,2

uu

xx

K1,2oo

""

//

��

R1,2

##

��

H′1,1
""

C′1,1
""

oo // G′0
��

C′1,2
||

oo // H′1,2
{{

H1,1 C1,1oo // G0 C1,2oo // H1,2.

I

hh OO 66

Finally pull back C′1,1 −→ G′0 ←− C′1,2 to obtain pre-critical pair

R1,1

{{

K1,1oo

{{

// L1,1

&&

L1,2

xx

K1,2oo

##

// R1,2

##
G′1,1 C′1,1oo // G′0 C′1,2oo // G′1,2.

J′

jj 44

Example 15. We can now complete the pre-critical pair extraction process, commenced
in Example 13, following the steps of Construction 14.
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Construction 14 means that we are able to extract a pre-critical pair from two rewrit-
ing steps with common source. If the pre-critical pair is joinable, we would then like to
embed the joining derivations to the original context.

The following is a useful step in this direction. Assuming a mono G′0 → G0, it
allows us to extend a derivation from G′0 ←− J′ to a corresponding one from G0 ←− J, if
we can obtain G0 by glueing G′0 and some context C0 along J′. Stated more formally,
we want the following diagram commute and (†) be a pushout.

J′ //

�� (†)

G′0
��

J // 55C0 // G0

(5)

Construction 16 (Embedding). The extended derivation is constructed as in the com-
muting diagram below, where each square is a pushout diagram.

L1

��

K1

��

oo // R1

��

L2

��

K2

��

oo // R2

��

. . . Ln

��

Kn

��

oo // Rn

��
J′

(†)

//

��

G′0

��

C′1
(γ1) (δ1)

��

oo // G′1

��

C′2
(γ2) (δ2)

��

oo // G′2

��

. . . G′n

��

C′n
(γn) (δn)

��

oo // G′n

��
C0 // G0 C1oo // G1 C2oo // G2 . . . Gn Cnoo // Gn

J′

��

[[`` CC

(ε2) (εn)

C0

[[`` CC

(ε1)

Joo

We shall now explain each of the components. The upper row of pushouts together
with morphisms J′ −→ C′i witnesses the original derivation (G′0 ←− J′)⇒∗ (G′n ←− J′).

For i = 1 . . . n, (εi) is formed as the pushout of C0 ←− J′ −→ C′i and (δi) as the pushout
of Ci ←− C′i −→ G′i , as shown in the diagram below.

J′ //

��

C′i

��

// G′i

��
C0 //

(εi)

Ci //
(δi)

Gi

(6)

It remains to construct pushouts (γi), which is done in the following diagram.

J′ //

&&

��

G′i−1

��

C′i
��

77

Ci
((

C0

77

//

(εi)

Gi−1

(γi) (7)

The exterior square in (7) is a pushout: for i = 1 it is (†) from (5), while for i ≥ 2 it
is obtained by composing (εi−1) and (δi−1) from (6). The universal property of (εi) yields
the morphism Ci → Gi−1. By pushout decomposition, the diagram (γi) is a pushout.

12



Example 17. In Example 15 we saw two derivations from
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following the steps in Construction 16 because the square in the following is a pushout.
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Constructions 14 and 16 are the main ingredients for showing the Knuth-Bendix
property for DPO with interfaces. Before we prove it, we need one technical lemma
from the theory of adhesive categories.

Lemma 18. Consider the cube on the right, where the top
and bottom faces are pullbacks, the rear faces are both pull-
backs and pushouts, and m is mono. Then, the front faces are
also pushouts.

G′0
m

��

C′1,2oo

��
C′1,1

<<

n
��

J′

��

==
oo

G0 C1,2oo

C1,1

;;

J
;;

oo

Theorem 19 (Local confluence). For a DPO system with interfaces, if all pre-critical
pairs are joinable then rewriting is locally confluent: given (G1,1 ←− I) ⇐ (G0 ←− I) ⇒
(G1,2 ←− I), there exists W ←− I such that

(G0 ←− I)
qy %-

(G1,1 ←− I)
∗ %-

(G1,2 ←− I)
∗qy

(W ←− I).

13



Proof. Following the steps of Construction 14, we obtain a pre-critical pair

(G′1,1 ← J′)⇐ (G′0 ← J′)⇒ (G′1,2 ← J′)

Because pre-critical pairs are by assumption joinable we have derivations

(G′1,1 ←− J′)⇒∗ (W ′
β′

←− J′) ∗⇐ (G′1,2 ←− J′).

Suppose w.l.o.g. that the leftmost derivation requires n steps and the rightmost m. To
keep the notation consistent with Construction 16, we fix notation G′n,1 := W ′=: G′m,2.

Now let J be the pullback object of C1,1 −→ G0 ←− C1,2. By the universal property,
we obtain maps ι : I → J and ξ : J′ −→ J.

G′0

��

C′1,2oo

��
C′1,1

;;

��

J′

ξ

��

<<
oo

G0 C1,2oo

C1,1

::

J
::

oo Iιoo

qq

jj

(8)

Recall by Construction 12 that the rear faces of (8) are both
pullbacks and pushouts. Then, by Lemma 18, the square on
the right is a pushout.

J′

��

//

(†)

G′0
��

J // G0

We are now in position to apply Construction 16 by taking C0 = J, which yields

(G0 ←− J)⇒ (G1,1 ←− J)⇒∗ (Gn,1
β1
←− J)

extending (G′0 ←− J′)⇒ (G′1,1 ←− J′)⇒∗ (G′n,1
β′

←− J′) and

(G0 ←− J)⇒ (G1,2 ←− J)⇒∗ (Gm,2
β2
←− J)

extending (G′0 ←− J′)⇒ (G′1,1 ←− J′)⇒∗ (G′m,2
β′

←− J′).

The next step is to prove that (Gn,1
β1
←− J) � (Gm,2

β2
←− J). To see this, it is enough to

observe that both the following squares are pushouts of J
ξ
←− J′

β′

−→ W ′ = G′n,1 = G′m,2.

J′

ξ ��

β′ // G′n,1
��

J
β1

// Gn,1

J′

ξ ��

β′ // G′m,2
��

J
β2

// Gm,2

Indeed, the leftmost is a pushout by composition of squares (εn) and (δn) in the embed-
ding construction and the rightmost by composition of (εm) and (δm).

To complete the proof, it remains to show that, in the above derivations, interface
J extends to interface I as in the statement of the theorem. But this trivially holds by
precomposing with ι : I → J. �

14



We are now ready to give our decidability result. To formulate it at the level of
generality of adhesive categories we need some additional definitions.

A quotient of an object X is an equivalence class of epis with domain X. Two epis
e1 : X → X1, e2 : X → X2 are equivalent when there exists isomorphism ϕ : X1 → X2
such that e1 ; ϕ = e2. Note that quotient is the dual of subobject.

A DPO rewriting system with interfaces is computable when

– pullbacks are computable,
– for every pairs of rules Li ←− Ki → Ri, L j ←− K j → R j, the set of quotients of Li + L j

is finite and computable,
– for all G ←− J, it is possible to compute every H ←− J such that (G ←− J)⇒ (H ←− J).

Computability refers to the possibility of effectively computing each rewriting step
as well as to have a finite number of pre-critical pairs. More precisely, the first two
conditions ensure that the set of all pre-critical pairs is finite (since every objects has
finitely many quotients) and each of them can be computed, while the last one ensures
that any possible rewriting step can also be computed. Thus, these assumptions rule
out the rewriting of infinite structures, singleing out instead those structures where it is
reasonable to apply the DPO mechanism, like finite hypergraphs in HypΣ , which are
exactly what is needed for implementing rewriting of SMTs.

Corollary 20. For a computable terminating DPO system with interfaces, confluence
is decidable.

Proof. By Theorem 19, if all pre-critical pairs are joinable then the system is confluent.
If not all pre-critical pairs are joinable, then at least one pair witnesses the fact that the
system is not confluent. Therefore, to decide confluence, it is enough to check that all
pre-critical pairs are joinable.

Since the system is computable, there are only finitely many pre-critical pairs and
these can be computed. For each pair, one can decide joinability: indeed each rewriting
step can be computed (since the system is computable) and there are only finitely many
(H ←− J) such that (G ←− J)⇒∗ (H ←− J) (since the system is terminating). �

It is worth to remark that this result is not in conflict with Theorem 1: Corollary 20
refers to confluence of all hypergraphs with interfaces G ←− J. The property that The-
orem 1 states as undecidable is whether the rewriting is confluent for all hypergraphs
with empty interface G ←− 0. Observe that the restriction to hypergraphs with empty in-
terface would make the above proof fail: a non-joinable pre-critical pair (S ←− J), with
J non empty, does not witness that rewriting is not confluent for all G ←− 0.

A similar problem arises with term rewriting, when restricting to confluence of
ground terms [30]. As an example consider the following term rewriting system de-
fined on the signature with two unary symbols, f and g, and one constant c.

f (g( f (x)))→ x f (c)→ c g(c)→ c

The critical pair f (g(x)) ← f (g( f (g( f (x))))) → g( f (x)) is not joinable, but the system
is obviously ground confluent, as every ground term will eventually rewrite into c.

Our work therefore allows one to view Theorem 1 in a new light: as hypergraphs
with empty interface are morally the graphical analogous of ground terms, we can say
that ground confluence is not decidable for DPO rewriting with interfaces.

15



4 Confluence for PROP rewriting

As emphasised in the introduction, a major reason for interest in DPO rewriting with
interfaces is that PROP rewriting (§2.2) may be interpreted therein. In this section we
investigate how our confluence result behaves with respect to this interpretation. The
outcome is that confluence is decidable for terminating PROP rewriting systems, where
terms are taken modulo a chosen special Frobenius structure (Corollary 28). For arbi-
trary symmetric monoidal theories, confluence is also decidable, provided that certain
additional conditions hold (Corollary 41).

4.1 From PROPs to Frobenius termgraphs

In this subsection we report a result from [4] that is crucial for the encoding of PROP
rewriting into DPO rewriting with interfaces in HypΣ (cf. Section 2.1).

First, we obtain our domain of interpretation by restricting the category Csp(HypΣ)
with arrows the cospans G1 ←− G2 −→ G3 of Σ-hypergraphs to those with G1, G3 discrete.

Definition 21 (Frobenius termgraphs). Any k ∈ N can be seen as a discrete hyper-
graph with k vertices. The objects of the PROP FTermΣ of Σ-Frobenius termgraphs are

natural numbers and arrows n→ m are cospans n
f
−→ G

g
←− m in HypΣ (where n, m are

considered as hypergraphs). FTermΣ , therefore, is a full subcategory of Csp(HypΣ).

Explicitly, composition in FTermΣ is defined by pushout as in Csp(HypΣ) and the
monoidal product ⊕ by coproduct in HypΣ . The idea behind the discreteness restriction
is that f and g tell what are the “left and right dangling wires” in the string diagram
encoded by G. In pictures, we shall represent n and m as actual discrete graphs— with
n and m nodes respectively— and use number labels (and sometimes colours, whenever
available to the reader) to help visualise how they get mapped to nodes of G.

Given a signature Σ, we define a PROP morphism bb·cc : SΣ → FTermΣ . Since SΣ is
the PROP freely generated by an SMT with no equations, it suffices to define bb·cc on the
generators: for each o : n→ m in Σ, we let bbocc be the following cospan of type n→ m.

o
n-1 m-1
1
0

1
0

n-1
1
0

1
0

m-1

Example 22. The two sides of the PROP rewriting rule (2) (Example 6) get interpreted
as the following cospans in FTermΣ .
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Proposition 23 ([4]). bb·cc : SΣ → FTermΣ is faithful.

The encoding bb·cc is an important part of Theorem 24 below. This is a pivotal result
in our exposition, as it serves as a bridge between algebraic and combinatorial struc-
tures. Indeed, it provides a presentation, by means of generators and equations, for the
PROP FTermΣ : the disjoint union of the SMTs of SΣ and Frob.

Theorem 24 ([4]). There is an isomorphism of PROPs Φ : SΣ + Frob
�
−→ FTermΣ .

The isomorphism Φ is given as [bb·cc, ψ] : SΣ + Frob→ FTermΣ , where ψ : Frob→
FTermΣ is the unique PROP morphism mapping the generators of Frob as follows

ψ
7−→ 01 2 0,1,2

ψ
7−→ 0 0

ψ
7−→ 0 1 20,1,2

ψ
7−→ 00

The special role played by Frob is what justifies the terminology Frobenius termgraph:
it is used to model those features of the graph domain that are not part of the syntactic
domain, e.g. the ability of building a “feedback loop” around some α : 1→ 1 in Σ.

↵
Φ
7−→ ↵

4.2 Confluence for rewriting in SΣ + Frob

We can use Theorem 24 to apply results for graphs with interfaces to SΣ + Frob. First,

one can turn the cospan n
i
−→ G

o
←− m = Φ(d) interpreting a string diagram d into a graph

with interface, which is defined as

pn
i
−→ G

o
←− mq := G

[i,o]
←−−− n + m.

For a system R we define the rewriting system pΦ(R)q in FTermΣ as

{〈pΦ(l)q, pΦ(r)q〉 | 〈l, r〉 ∈ R}.

Example 25. The PROP rewriting system R of Example 6 consists of just a single rule,
let us call it 〈d, e〉. The resulting DPO rewriting system with interfaces pΦ(R)q is then
presented in Example 7. Also, Example 22 is an intermediate step of this transforma-
tion, as it shows the cospans bbccc = Φ(c) and bbdcc = Φ(d). One can obtain both graphs
with interfaces pΦ(c)q and pΦ(d)q by “folding” the domain/codomain of the cospans
into the interface of Example 7.

Observe that a rule in pΦ(R)q just consists of a pair of hypergraphs with a common
interface, i.e., it is a DPO rule of the form L ← n + m → R. Thus, PROP rewriting in
FTermΣ coincides with DPO rewriting with interfaces: together with Theorem 24, this
correspondence yields the following result.
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Theorem 26 ([4]). Let R be a rewriting system on SΣ + Frob.
1. If d R e, then pΦ(d)q⇒pΦ(R)q pΦ(e)q.
2. If pΦ(d)q⇒pΦ(R)q (H ←− J), then ∃e such that pΦ(e)q � (H ←− J) and d R e.

One can read Theorem 26 as: DPO rewriting with interfaces is sound and complete
for any symmetric monoidal theory with a chosen special Frobenius structure, i.e. one
of shape (Σ + ΣF , E + EF), with (ΣF , EF) the SMT of Frob. There are various relevant
such theories in the literature, such as the ZX-calculus [15], the calculus of signal flow
graphs [6], the calculus of stateless connectors [10] and monoidal computer [41].

The combination of the result above with Theorem 19 is however not sufficient
for ensuring the decidability of the confluence for a terminating rewriting system R on
SΣ+Frob. Indeed, Theorem 19 and Theorem 26 ensure that if all the pre-critical pairs in
pΦ(R)q are joinable, then the rewriting in R is confluent. However, for the decidability
of confluence in R the reverse is also needed: if one pre-critical pair in pΦ(R)q is not
joinable, then R should not be confluent. To conclude this fact, it is enough to check
that all pre-critical pairs of pΦ(R)q lay in the image of pΦ(·)q, i.e., that they all have
discrete interfaces. The key observation is given by the lemma below.

Lemma 27 (Pre-critical pair with discrete interface). Consider a pre-critical pair in
HypΣ as in (3), Definition 8. If both K1 and K2 are discrete, so is the interface J.

Proof. For i = 1, 2, since Ki is discrete, the hyperedges of Ci are exactly those of Gi

that are not in fi(Li). Since [ f1, f2] : L1 + L2 → S is epi, all the hyperedges of G are
either in f1(L1) or f2(L2). Therefore, J cannot contain any hyperedge. �

Since in every rule L ←− K −→ R in pΦ(R)q, K is discrete, from Lemma 27 and
Theorem 19 we derive the following result.

Corollary 28. Confluence is decidable for terminating rewriting systems on SΣ + Frob.

Proof. To decide confluence of a rewriting system R on SΣ + Frob, it is enough to
check whether all pre-critical pairs in pΦ(R)q are joinable. Indeed, if all pre-critical
pairs are joinable, then R is confluent by Theorems 19 and 26. For the other direction,
suppose that there exists a pre-critical pair pΦ(R)q⇐ (S ←− J) ⇒pΦ(R)q that is not joinable.
By construction, in every rule L ←− K −→ R in pΦ(R)q, K is discrete. Therefore, by
Lemma 27, also J is discrete. This is the key fact to entail that there exists d in SΣ+Frob,
such that pΦ(d)q = (S ←− J). By Theorem 26, d witnesses that R is not confluent.

Now, if R is terminating, then by Theorem 26, also pΦ(R)q is terminating. The latter
is also computable and therefore joinability of pre-critical pairs of pΦ(R)q can easily be
decided by following the steps in the second part of the proof of Corollary 20. �

4.3 Confluence for left-connected rewriting in SΣ

So far, we have shown a procedure to decide confluence for rewriting on SΣ + Frob. In
order to study PROP rewriting in absence of a chosen Frobenius structure, we focus on
component bb·cc : SΣ → FTermΣ of the isomorphism Φ.
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We first recall from [4] a combinatorial characterisation of the image of bb·cc. It is
based on a few preliminary definitions. We call a sequence of hyperedges e1, e2, . . . , en

a directed path if at least one target of ek is a source for ek+1 and a directed cycle if
additionally at least one target of en is a source for e1. The in-degree of a node v in
an hypergraph G is the number of pairs (h, i) where h is an hyperedge with v as its
i-th target. Similarly, the out-degree of v is the number of pairs (h, j) where h is an
hyperedge with v as its j-th source. We call input nodes those with in-degree 0, output
nodes those with out-degree 0, and internal nodes the others. We write in(G) for the set
of inputs and out(G) for the set of outputs.

Definition 29. An hypergraph G is monogamous directed acyclic (mda) if
1. it contains no directed cycle (directed acyclicity) and
2. every node has at most in- and out-degree 1 (monogamy).

A cospan n
f
−→ G

g
←− m in FTermΣ is monogamous directed acyclic when G is an

mda-hypergraph, f is mono and its image is in(G), g is mono and its image is out(G).

Example 30. The following four cospans are not monogamous.

0 0 110 10 1 0 110 0
11

0
2 2

Theorem 31 ([4]). n −→ G ←− m in FTermΣ is in the image of bb·cc iff it is mda.

As for a graph with interface G
f
←− J, we call it monogamous directed acyclic if so

is G and the image of f coincides with in(G) + out(G). This means that there exists a

cospan n
i
−→ G

o
←− m such that pn

i
−→ G

o
←− mq = G

f
←− J, i.e., J = n + m and f = [i, o].

We are now in position to interpret PROP rewriting for SΣ in DPO-rewriting for
mda-hypergraphs with interfaces, via the mapping ~·� def

= pbb·ccq that takes string dia-
grams to mda hypergraphs with interfaces.

As shown in [4], this interpretation is generally unsound. There are two main rea-
sons, which we illustrate in the next two examples. They motivate our restriction to
PROP rewriting systems that make the interpretation sound, in Definition 34 below.

Example 32. Consider Σ = {α1 : 0 → 1, α2 : 1 → 0, α3 : 1 → 1} and the PROP rewrit-

ing system R = {  ↵3 } on SΣ . In FTermΣ , ~R� is given by the DPO

rule of mda-hypergraphs with interface ↵30 10, 1 0 1 . The rule

is not left-linear and therefore pushout complements are not necessarily unique for the
application of this rule, as witnessed by the following two DPO rewriting steps.
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f

↵3
0 10, 1 0

1

↵1 ↵2↵1 ↵2
0, 1 0 1

↵1 ↵2
0 1↵3

↵1 ↵2
0 1

↵3

↵3
0 10, 1 0

1

↵1 ↵2↵1 ↵2
0, 1 01

g

The different outcome is due to the fact that f maps 0 to the leftmost and 1 to the
rightmost node, whereas g swaps the assignments. Even though both rewriting steps
could be mimicked at the syntactic level in SΣ + Frob (as guaranteed by Theorem 26,
cf. [4, Ex. 4.8]), the rightmost one is illegal for R in SΣ .

Example 33. Take Σ = {α1 : 1 → 2, α2 : 2→ 1, α3 : 1→ 1, α4 : 1 → 1} and a PROP
rewriting system R on SΣ given by the rewriting rule below left, interpreted in ~R� as
below right. The next line introduces a diagram c of SΣ and its interpretation.

↵1 ↵2

↵4

↵4
 

↵1 ↵2

↵4

↵4

0

1

2

3

0

1

2

3

0
1

2
3

c := ↵1 ↵2
↵3

~c� := ↵3↵1 ↵2
1 3 1 3

Now, the left-hand side of the rule in R cannot be matched in c. However, their inter-
pretation in FTermΣ yields a legal DPO rewriting step as below.

↵3↵4 ↵4
↵3

2 0

1 3

1 2 0 3

↵1 ↵2

↵4

↵4

0

1

2

3

0

1

2

3

↵3↵1 ↵2
1

2 0
3

0
1

2

4

3

1 3

4

The two examples motivate the following definition.

Definition 34. An mda-hypergraph G is strongly connected if for every input x ∈ in(G)
and output y ∈ out(G), there exists a directed path from x to y. A DPO system with
interface is called left-connected if it is left-linear and, for every rule L ← K → R,
L ← K and R ← K are mda-hypergraphs with interface and L is strongly connected.
We call a PROP rewriting system R on SΣ left-connected if ~R� is left-connected.
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Non-commutative bimonoids (Example 5(c), see also §5 below) and the Yang-
Baxter rule of Example 6 are examples of left-connected rewriting systems.

Intuitively, in Definition 34, strong connectedness prevents matches leaving “holes”,
as in Example 33, whereas left-linearity guarantees uniqueness of the pushout comple-
ments, and prevents the problem in Example 32. We are then able to prove the following.

Theorem 35. Let R be a left-connected rewriting system on SΣ .
1. If d R e, then ~d�⇒~R� ~e�.
2. If ~d�⇒~R� (H ←− J), then ∃e such that ~e� � (H ←− J) and d R e.

Remark 36. For confluence, restricting to left-linearity is not particularly harmful. In-
deed, an mda-hypergraph with interface G ← J is not mono iff G has one node that is
both input and output, i.e., an isolated node. A rule with a strongly connected L ← K
is not left-linear precisely when L is discrete, with a single node. Such a rule cannot be
part of a terminating system, i.e. one where local confluence implies confluence.

The above theorem allows us to use DPO rewriting with interfaces as a mechanism
for rewriting SΣ . The last ingredient that we need for confluence is a suitable notion of
pre-critical pair. One cannot simply reuse Definition 8. Indeed, we want to enforce that
the common source S ←− J (cf. (3)) of the two derivations is an mda-hypergraph with
interfaces, so that it is in the image of ~·� and we can reason about pre-critical pairs
‘syntactically’ in SΣ . However, while Lemma 27 guarantees that this is always the case
for rewriting systems on SΣ + Frob, with Definition 8 this is not guaranteed for SΣ even
in presence of left-connected rules, as shown by the two examples below.

Example 37. We concoct a pre-critical pair by instantiating (3) as shown below.

0

1
0 1 0 1 0 1

� ↵
�

↵0
1

L1 L2K1 K2 S

Although L1 ←− K1 and L2 ←− K2 are left-hand sides of left-connected rules, S is not
monogamous, thus this pre-critical pair does not correspond to anything in the syntax.

Example 38. Even if we restrict to left-connected rules with an mda-hypergraph, defin-
ing the interface J by pullback as in Definition 34 may not yield an mda-hypergraph
with interface. Here is an example, where two rules match in an mda-hypergraph G, but
the interface contains one extra node 4 which is neither an input nor an output of G.

0 4 5

↵
� ↵

�4
5

3
0

1

2 � ↵
5

4
0

1

2

↵
� ↵

4

3
0

1

2 �
↵

4
5

31 1

4
50

3

4

�
50

3

4

21



The previous two examples motivate the following definition.

Definition 39 (Mda pre-critical pair). Let R be a left-connected DPO system contain-
ing the rules L1 ←− K1 −→ R1 and L2 ←− K2 −→ R2. Consider the following derivations
with common source S ←− J.

R1

��

K1oo

q ��

// L1

p

f1

##

L2
f2

{{ q

K2oo

�� p

// R2

��
H1 C1oo // S C2oo // H2

J

ee OO 99

We say that (H1 ←− J) ⇐ (S ←− J) ⇒ (H2 ←− J) is an mda pre-critical pair if
[ f1, f2] : L1 + L2 → S is epi and S ←− J is an mda-hypergraph with interface; it is
joinable if there exists an mda-hypergraph with interface W ←− J such that (H1 ←−

J)⇒∗ (W ←− J) ∗⇐ (H2 ←− J).

We will drop the prefix mda, when there is no risk of confusion with Definition 8.
We are now in position to state the confluence theorem for left-connected systems.

Theorem 40 (Local confluence for left-connected systems). For a left-connected DPO
system with interfaces, if all mda pre-critical pairs are joinable then rewriting is locally
confluent: given an mda-hypergraph with interface G0 ←− I and (G1,1 ←− I) ⇐ (G0 ←−

I)⇒ (G1,2 ←− I), there exists an mda-hypergraph with interface W ←− I such that

(G0 ←− I)
qy %-

(G1,1 ←− I)
∗ %-

(G1,2 ←− I)
∗qy

(W ←− I).

The proof of Theorem 40 follows steps analogous to the one of Theorem 19. The
essential difference is that mda pre-critical pairs now have interfaces that are not nec-
essarily pullbacks. The assumption of left-connectedness is, nevertheless, enough to
ensure that the fundamental pieces, Constructions 14 and 16, can be reproduced.

Corollary 41. Let R be a terminating left-connected rewriting system on SΣ . Then con-
fluence of R is decidable.

Proof. By Theorem 35 and 40, it is enough to check whether pre-critical pairs in ~R�
are joinable. This is decidable since R is terminating and ~R� is computable. �

Example 42. The PROP rewriting system R of Example 6 is left-connected. Once inter-
preted as the DPO system with interfaces of Example 7, we can do critical pair analysis.
The mda pre-critical pair below (where the middle grey graph acts as the interface for
the rewriting steps) is not joinable, meaning that R is not confluent.
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We emphasise that the decision procedure relies on the fact that there are only finitely
many pre-critical pairs to consider — the above one being the only to feature a nontrivial
overlap of rule applications. This is in contrast with a naive, ‘syntactic’ analysis, which
as we observe in Example 6 yields infinitely many pre-critical pairs for R.

We will devote the next section to a positive example of our confluence result.

5 Case study: non-commutative bimonoids

We conclude with an application of the left-connected case, showing confluence of the
theory NB of non-commutative bimonoids (Example 5(c)). Below is the interpretation
of the theory as a DPO system ~RNB�, which was shown to be terminating in [4].

NB1 := µ1

0 µ
2

3
0

←
0
1

3
2 →

µ1
0

µ
2

3

NB2 :=
1⌫
2

0
⌫

3
←

0
1

3
2 →

1

⌫
2

0
⌫

3

NB3 := 1
0

⌘ µ ←
0
1 →

0

1
NB4 := 1

0

⌘ µ ←
0
1 →

0

1

NB5 :=
1

0
⌫ " ←

0
1 →

0

1
NB6 :=

10
⌫ "

←
0
1 →

0

1

NB7 :=
1

0

"µ ←
0
1 →

0

1
"

"
NB8 :=

1

0

⌫⌘ ←
0
1 →

0

1

⌘

⌘

NB9 :=
1

0 2

3

⌫µ ←
0
1

3
2 →

0

1

2

3

µ

µ⌫

⌫
NB10 := ⌘ " ← →

Given that the system is terminating, it suffices to show local confluence. Observe that
~RNB� is left-connected: monogamicity is ensured by the fact that it is in the image of
~·�; strong connectedness and left-linearity hold by inspection of the set of rules. We
can thus use Theorem 40 and local confluence follows from joinability of the pre-critical
pairs. Among them, the pairs without overlap of rule applications pose no problem: they
are trivially joinable in one step, by applying the other rule. One example is given below,
with the middle grey graph acting as the interface for all depicted derivation steps.
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Thus we confine ourselves to analysing actual critical pairs, with overlapping rule ap-
plications. One such pair is given below, also involving rules NB1 and NB9. Again, we
show how it is joined, with the interface of each step drawn in the centre.
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Overall there are 22 critical pairs to consider. For space reasons, for each of them we
only show the graph exhibiting the overlap. It is straightforward to check that the cor-
responding pairs are all joinable.
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We can thereby conclude that NB is a confluent rewriting system. Since it is also ter-
minating, equivalence of terms in NB is decidable by means of rewriting. Note that, by
virtue of Corollary 41, the above pre-critical pair analysis can be automated.
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6 Conclusion

The starting observation of this paper (Theorem 19) is that the Knuth-Bendix property
holds for DPO with interfaces; as an easy corollary (Corollary 20), for a terminating
system, confluence is decidable. The relevance of this is two-fold. On the conceptual
side, it puts graph rewriting in tight correspondence with term rewriting: when consid-
ering rewriting with interfaces, confluence is decidable both for graphs and terms [33],
while the appropriate notion of ground confluence is undecidable in both cases [30,42].

On the side of applications, our result allows one to study confluence for SMTs.
One simple consequence of Theorem 19 and of our previous work in [4] is that, for all
those SMTs including a special Frobenius structure – which are already commonplace
in computer science [10,11,47,15,16,6,7,1,23] – local confluence can be checked by
means of critical pair analysis. Moreover, when termination is guaranteed, confluence
can be decided automatically (Corollary 28). An analogous result (Corollary 41) holds
for those SMTs that do not include a special Frobenius structure, but whose set of
rules satisfies the left-connected conditions. Hence it applies to a variety of other non-
Frobenius theories, such as those in [35,26,21]. In both cases, these decision procedures
are amenable to implementation in string diagram rewriting tools like Quantomatic [32]
(via an encoding of hypergraphs) or directly in hypergraph-based rewriting tools.
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8. H. J. S. Bruggink, R. Cauderlier, M. Hülsbusch, and B. König. Conditional reactive systems.
In FSTTCS 2011, volume 13 of LIPIcs, pages 191–203. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2011.

9. R. Bruni, F. Gadducci, and U. Montanari. Normal forms for algebras of connection. Theo-
retical Computer Science, 286(2):247–292, 2002.

10. R. Bruni, I. Lanese, and U. Montanari. A basic algebra of stateless connectors. Theoretical
Computer Science, 366(1–2):98–120, 2006.

11. R. Bruni, H. C. Melgratti, and U. Montanari. A connector algebra for P/T nets interactions.
In CONCUR 2011, volume 6901 of LNCS, pages 312–326. Springer, 2011.

12. A. Burroni. Higher dimensional word problems with applications to equational logic. Theo-
retical Computer Science, 115(1):43–62, 1993.

13. A. Carboni. Matrices, relations, and group representations. Journal of Algebra, 136(1):497–
529, 1991.

14. A. Carboni and R. F. C. Walters. Cartesian bicategories I. Journal of Pure and Applied
Algebra, 49(1-2):11–32, 1987.

15. B. Coecke and R. Duncan. Interacting quantum observables. In ICALP 2008, volume 5216
of LNCS, pages 298–310. Springer, 2008.

16. B. Coecke, R. Duncan, A. Kissinger, and Q. Wang. Strong complementarity and non-locality
in categorical quantum mechanics. In LiCS 2012, pages 245–254. ACM, 2012.

17. A. Corradini. On the definition of parallel independence in the algebraic approaches to graph
transformation. In STAF 2016, volume 9946 of LNCS. Springer, 2016.

18. H. Ehrig, A. Habel, J. Padberg, and U. Prange. Adhesive high-level replacement categories
and systems. In ICGT 2004, volume 2987 of LNCS, pages 144–160. Springer, 2004.

19. H. Ehrig and B. König. Deriving bisimulation congruences in the DPO approach to graph
rewriting. In FoSSaCS 2004, volume 2987 of LNCS, pages 151–166. Springer, 2004.

20. H. Ehrig and H.-J. Kreowski. Parallelism of manipulation in multidimensional information
structures. In MFCS 1976, volume 45 of LNCS, pages 284–293. Springer, 1976.

21. M. P. Fiore and M. D. Campos. The algebra of directed acyclic graphs. In Abramsky
Festschrift, volume 7860 of LNCS, pages 37–51. Springer, 2013.

22. B. Fong. Decorated cospans. Theory and Applications of Categories, 30(33):1096–1120,
2015.
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