
Deconstructing Lawvere with Distributive Laws

Filippo Bonchia, Pawe l Sobocińskib, Fabio Zanasic

aUniversità di Pisa, Italy
bUniversity of Southampton, United Kingdom
cUniversity College London, United Kingdom

Abstract

PROs, PROPs and Lawvere categories are related notions adapted to the
study of algebraic structures borne by an object in a category: PROs are
monoidal, PROPs are symmetric monoidal and Lawvere categories are carte-
sian. This paper connects the three notions using Lack’s technique for com-
posing PRO(P)s via distributive laws. We show that Lawvere categories can
be seen as the composite PROP CCm ; T , where T expresses the algebraic
structure in linear form and CCm express the ability of copying and discard-
ing them. In turn the PROP T can be decomposed in terms of PROs as
P ; S where P expresses the ability of permuting variables and S is the PRO
encoding the syntactic structure without permutations.

1. Introduction

The subject of this paper is presentations of algebraic theories, defined as
the pair (Σ, E) given by a signature Σ — a set of operations with associated
arity and coarity — and a set E of equations between Σ-terms. Presentations
play a central role in theoretical computer science, serving as specifications
for various computational models. For instance, a presentation captures the
core of a programming language, with Σ-terms defining the language syn-
tax and E describing a notion of semantic equality between programs. In
such classical examples it is typical to deal with cartesian presentations, in
which Σ-operations all have coarity 1 and Σ-terms are constructed as trees
with nodes labeled by operations in Σ, or variables. In recent years, much

Email addresses: filippo.bonchi@unipi.it (Filippo Bonchi),
ps@ecs.soton.ac.uk (Pawe l Sobociński), f.zanasi@ucl.ac.uk (Fabio Zanasi)

Preprint submitted to Journal of Logical and Algebraic Methods in ProgrammingDecember 5, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/154748863?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

attention has been focussed on weakening the “cartesianity” of algebraic
theories, which in essence amounts to resource sensitivity : dropping the as-
sumption that the underlying data manipulated by an algebraic theory is
classical. Symmetric monoidal algebraic theories have been of particular in-
terest, which leads us to consider symmetric monoidal presentations (SMPs).
SMPs are a natural presentation of diagrammatic formalisms, including those
used for circuits and other component-based systems, which are sensitive to
resources. SMPs feature in algebraic approaches to Petri nets [16, 41], bi-
graphs [17], quantum circuits [20], and signal flow graphs [7, 9, 1, 25, 11]. A
crucial difference to cartesian presentations is linearity : variables of symmet-
ric monoidal terms cannot be copied nor discarded. Moreover, whereas in
cartesian presentations all operations have coarity 1, signatures of SMPs may
feature operations with (arbitrary arities) and coarities. The resulting terms
are 2-dimensional: the structure is that of directed acyclic graphs, rather
than trees.

A further generalisation, relevant in mathematical physics (see e.g. [2]),
is provided by monoidal presentations (MPs) of merely monoidal algebraic
theories. As in symmetric monoidal presentations, the use of variables is
linear, but variables cannot be permuted: in every pair of compatible Σ-
terms they must be used in the same order.

In this paper we develop a stratified treatment of monoidal, symmet-
ric monoidal and cartesian presentations. Roughly speaking, a symmetric
monoidal presentation can obtained from a monoidal presentation by letting
it interact with a permutation structure; in turn, a cartesian presentation
arises from the interaction of a symmetric monoidal presentation with a
structure for copying and discarding variables. Our technical contribution
is to exhibit these constructions in a unified and canonical manner using
distributive laws of PROs and PROPs [34].

PROs and PROPs are, respectively, monoidal and symmetric monoidal
categories with objects the natural numbers, where monoidal product on ob-
jects is addition. They are the obvious choices for the notion of category in-
duced by, respectively, monoidal and symmetric monoidal presentations. In-
deed, monoidal presentations freely generate PROs and symmetric monoidal
presentations generate PROPs. Both PROs and PROPs can be regarded as
monads in the 2-categorical sense of Street [42] and, like monads, they can be
composed by means of distributive laws [31]. In a nutshell, a distributive law
λ : T1 ; T2 → T2 ; T1 of PRO(P)s is a recipe for moving arrows of T1 past those

2

of T2. The resulting PRO(P) T2 ; T1 enjoys a factorisation property: every
arrow in T2 ; T1 decomposes as one of T2 followed by one of T1. The graph of

λ can be seen as a set of directed equations Eλ := (
∈T1−−→ ∈T2−−→) ≈ (

∈T2−−→ ∈T1−−→),
which also can be used as an “oracle” to obtain a presentation of T2 ; T1:
if T1 and T2 are presented by (Σ1, E1) and (Σ2, E2), T2 ; T1 is presented by
(Σ1] Σ2, E1] E2] Eλ).

The cartesian analogues of PROs and PROPs are Lawvere categories1, a
well known class of structures adapted to the study of categorical universal
algebra. Our starting observation is that the Lawvere category LΣ on a
cartesian signature Σ exhibits a factorisation property analogous to the one

of composed PROPs: arrows can be decomposed as
∈CCm−−−→ ∈TΣ−−→, where CCm

is the PROP of commutative comonoids, generated by a copy 1 → 2 and
a discard 1 → 0 operation together with the usual equations, and TΣ is the
PROP freely generated by Σ. This factorisation represents cartesian Σ-terms
by their syntactic tree — the TΣ-part — with the possibility of explicitly
indicating variable-sharing among sub-terms — the CCm-part. This simple
observation leads us to the main result of the paper: for a cartesian signature
Σ, there is a distributive law of PROPs λ : TΣ ; CCm → CCm ; TΣ which is
presented by equations that express the naturality of copier and discarder;
the resulting composed PROP CCm ; TΣ is the Lawvere category LΣ.

To prove this, another observation is useful: the PROP TΣ itself enjoys
the factorisation property of composed PROs: arrows can be decomposed

as
∈P−→ ∈SΣ−−→, where SΣ is the PRO freely generated by Σ and P is the PRO

of permutations. From this, we deduce the existence of a distributive law
of PROs λ′ : SΣ ; P → P ; SΣ which is presented by equations telling that
permutations are well-behaved with respect to Σ.

A quotient construction on the distributive laws λ and λ′ leads to a more
general observation about cartesian presentations (Σ, E), with the proviso
that E only contains linear equations. For instance the Lawvere category
of commutative monoids LCMn can be obtained directly by means of PROP
composition, while the Lawvere category LGr of abelian groups cannot, be-
cause of the presence of the non-linear equation x×x−1 = 1 for the inverse of
the group action. Obviously, one can still formulate LGr as the quotient of the
composite LCMn by adding this equation (see Example 6.2(b)). Similarly, the

1 Also called Lawvere theories in the literature: i.e. finite product categories with set
of objects the natural numbers, where product on objects is addition [33, 29].

3

PROP of monoids Mn can be obtained by means of PRO composition, but
the PROP of commutative monoids cannot, since the axioms expressing com-
mutativity x× y = y× x relies on the “availability” of permutations. Again,
this can be regarded as a quotient of the composite Mn (see Example 3.3(b)).

Related work. In categorical algebra, following Lawvere’s influential perspec-
tive [33], presentations are sometimes deemed as a derivative concept, since
unlike theories (Lawvere categories) they are not invariant in regards to mod-
els: different presentations can yield the same theory, i.e. the same Lawvere
category. In our work, instead, presentations take on a more central role. As
explained above, for us this is motivated by the ubiquitous role that presen-
tations play in theoretical computer science as specifications for component-
based systems. This paper brings a more structured approach to the design
of such specifications, modularising notoriously difficult tasks such as ob-
taining completeness and decidability of a string diagrammatic theory with
respect to an intended semantics.

The motto “cartesian terms = linear terms + copying and discarding”
inspired several papers exploiting the role of CCm in Lawvere categories,
see e.g. [18, 32, 21]. In our work, Lawvere categories feature as a distin-
guished example of a construction, PROP composition, that is increasingly
important in many recent research threads [8, 7, 25, 38]. It is also worth
mentioning that the relationship between symmetric monoidal and cartesian
structures is central in the categorical semantics of linear logic; from this
perspective, the presence of CCm allows the interpretation of the structural
rules of contraction and weakening — see e.g. [30, 36].

The following construction in two-dimensional monad theory [5], reported
by Baez in [3], is close in spirit to our work. There is pseudo-adjunction
between symmetric monoidal and categories with finite products

SMCat

L
**

⊥ FPCat

R

jj

where R is the forgetful functor and L adds to any object of C ∈ SMCat a
natural copy-discard structure: natural diagonals and projections. Baez [3]
describes an equivalence between RL(C) and C⊗CCm, with the tensor prod-
uct ⊗ defined by SMCat[C1 ⊗ C2,C3] ' SMCat[C1, SMCat[C2,C3]].

In this paper, we restrict our attention to PROPs TΣ ∈ SMCat freely
generated by a cartesian signature Σ: here it is enough to add a copy-discard

4

structure for the object 1 (producing only finitely many additional equations)
and RL(TΣ) coincides with PROP composition CCm ; TΣ. Indeed, combining
TΣ and CCm by tensor or by composition (according to the distributive law
of Theorem 6.1 below) produces the same equations (Lw1)-(Lw2)2. In this
particular setting, therefore, the tensor product and the distributive law give
the same result.

The two constructions—tensor products and distributive laws—differ for
permutations: the PROP TΣ is the composite PRO P ; SΣ (Theorem 5.1)
but does not result from a tensor of P and SΣ. Indeed, the aforementioned
distributive law gives equations (N1)-(N2), whereas the tensor means that
Σ-operations and symmetries must “commute” [28, 27]. This is a weaker
condition than naturality: Σ-operations can only “slide” over a symmetry in
the restricted case illustrated below:

o
o =

o
o .

Another example where the two constructions diverge is the well-known
symmetric monoidal theory of special (strongly separable) Frobenius algeb-
gras. As shown by Lack [31], this important theory arises from a distributive
law of commutative monoids over commutative comonoids, from which one
can read off the usual presentation. The composite here is the PROP of
cospans of finite sets. The tensor product, instead, gives the theory of bial-
gebras (see e.g. [3]), which incidentally can be obtained from a different dis-
tributive law, that of comonoids over monoids, forming the composite PROP
of spans of finite sets [31]. It is this finer control and increased expressivity of
distributive laws as a powerful source of “equation provenance” that makes it
interesting for us as a tool for the modular construction of algebraic theories.

We conclude with an observation that relates our work to earlier studies
of syntax with non-linear use of variables. Another operation on PROPs,
namely sum, is often useful when working with symmetric monoidal pre-
sentations [43]. Sum is just the coproduct in the category of PROPs.
Whenever two PROPs T1 and T2 can be presented by the presentations
(Σ1, E1) and (Σ2, E2), then their sum T1 + T2 is presented by the disjoint
union (Σ1] Σ2, E1] E2).

2For computing the equations presenting the tensor of theories, see e.g. [27, Sec. 4].

5

By taking the sum CCm+TΣ, rather than the composition, we are able to
capture a different, well-known representation for cartesian Σ-terms, namely
term graphs, which are acyclic graphs labeled over Σ. With respect to the
standard tree representation, the benefit of term graphs is that the sharing
of any common sub-term can be represented explicitly, making them partic-
ularly appealing for efficient rewriting algorithms, see e.g. [40] for a survey
on the subject. As shown in [21], Σ-term graphs are in 1-1 correspondence
with the arrows of the free gs-monoidal category generated by Σ, a concept
that actually amounts to forming the sum of PROPs CCm + TΣ. Thus the
only difference between term graphs and the representation of terms given
by CCm ; TΣ is in the naturality of copier and discarder in the latter. For
instance, a term where a resource is explicitly copied is not identified with
the term where two copies appear separately: i.e., copying is not natural.

Previous work. This work extends the conference paper [10] with material
on PROs and distributive laws of PROs. As well as describing a more com-
prehensive picture — monoidal presentations symmetric monoidal presen-
tations cartesian presentations — the new decomposition of TΣ as P ; SΣ

(Theorem 5.1) simplifies the proof of the main theorem (Theorem 6.1).

Synopsis. Following the introduction of monoidal, symmetric monoidal and
cartesian presentations together with the related notions of PROs, PROPs
and Lawvere categories in Section 2, we recall basic definitions and results
on distributive laws of PROs and PROPs from [31] and [43] in Section 3. As
mathematical objects, distributive laws are amenable to some operations –
illustrated in Section 4 – that are a tool-kit for proving our results: in Section
5, we show the distributive law of PROs that gives rise to the composite TΣ,E

and, in Section 6, the distributive law of PROPs that yields LΣ,E.

Prerequisites and notation. We assume familiarity with the basics of cate-
gory theory (see e.g. [35, 15]), the definition of symmetric strict monoidal
category [35, 39] (often abbreviated as SMC) and of bicategory [15, 4]. We
write f ; g : a→ c for composition of f : a→ b and g : b→ c in a category C,
and C[a, b] for the hom-set of arrows a→ b. It will be sometimes convenient

to indicate an arrow f : a → b of C as x
f∈C−−→ y or also

∈C−→, if names are
immaterial. For C an SMC, ⊕ is its monoidal product, with unit object I,
and σa,b : a ⊕ b → b ⊕ a is the symmetry associated with a, b ∈ C. Given
F : C1 → C2, we denote with Fop : Cop

1 → Cop
2 the induced functor on the

opposite categories of C1,C2.

6

(t1 ; t3)⊕ (t2 ; t4) = (t1 ⊕ t2) ; (t3 ⊕ t4)

(t1 ; t2) ; t3 = t1 ; (t2 ; t3) idn ; c = c = c ; idm
(t1 ⊕ t2)⊕ t3 = t1 ⊕ (t2 ⊕ t3) id0 ⊕ t = t = t⊕ id0

Figure 1: Axioms of strict monoidal categories for a PRO.

σ1,1 ; σ1,1 = id2 (t⊕ idz) ; σm,z = σn,z ; (idz ⊕ t)

Figure 2: Extra axioms describing the symmetries in a PROP.

2. Monoidal, Symmetric Monoidal and Cartesian Theories

2.1. Monoidal presentations and PROs

Our exposition begins with monoidal presentations : specifications for
algebraic structures borne by objects in a monoidal category. The associated
categorical notion is called PRO (monoidal product category, after [34]).

Definition 2.1. A (one-sorted) monoidal presentation (MP) is a pair (Σ, E)
consisting of a signature Σ and a set of equations E. The signature Σ is
a set of generators o : n → m, where m and n are natural numbers, n is
the arity, and m the coarity. The set of monoidal Σ-terms is obtained by
composing generators in Σ and the unit id : 1 → 1 with ; and ⊕. This is a
purely formal process: given Σ-terms t : k → l, u : l → m, v : m → n, one
constructs new Σ-terms t ; u : k → m and t⊕ v : k+n→ l+n. The set E of
equations contains pairs (t, t′ : n → m) of monoidal Σ-terms with the same
arity and coarity.

A monoidal presentation is said to be operadic when all the operations
have coarity 1 and all equations are between Σ-terms of coarity 1.

A PRO is a strict monoidal category with objects the natural numbers,
where ⊕ on objects is addition. Morphisms between PROs are strict identity-
on-objects monoidal functors: PROs and their morphisms form the category
PRO. We call a sub-PRO a sub-category of a PRO which is also a PRO,
with the inclusion functor a PRO morphism.

The PRO S(Σ,E) freely generated by an MP (Σ, E) has as its set of arrows
n → m the set of monoidal Σ-terms n → m taken modulo the laws of strict
monoidal categories — Fig. 1 — and the smallest congruence (with respect
to ; and ⊕) containing the equations t = t′ for any (t, t′) ∈ E. When E is
empty, we usually write SΣ for the freely generated PRO.

7

There is a natural graphical representation for arrows of a PRO as string
diagrams, which we now sketch, referring to [39] for the details. A monoidal
Σ-term n→ m is pictured as a box with n ports on the left and m ports on
the right. Composition via ; and ⊕ are rendered graphically by horizontal
and vertical juxtaposition of boxes, respectively.

t ; s is drawn st t⊕ s is drawn t
s

. (1)

In any MP there are specific Σ-terms generating the underlying symmetric
monoidal structure: these are id1 : 1 → 1, represented as , and the unit
object for ⊕, that is, id0 : 0 → 0, whose representation is an empty dia-
gram . Graphical representation for arbitrary identities idn are generated
according to the pasting rules in (1).

Example 2.2.

(a) We consider the monoidal presentation based on a the signature with a
single generator : 2→ 2 and the following equations.

= (P1) = (P2)

Write P for the corresponding freely generated PRO. There is a con-
crete description of the string diagrams of P as permutations: P is
isomorphic to the PRO whose arrows n → m exist only when n = m,
in which case they are the permutation on the n-elements set.

(b) The MP (ΣM , EM) of monoids is based on a signature ΣM with a mul-
tiplication : 2→ 1 and a unit : 0→ 1. The set of equations EM

asserts associativity (A1) and unitality (A2)-(A3) of the multiplication.

= (A1) = (A2) = (A3)

We write Mn for the corresponding freely generated PRO. Mn also has
a concrete description, as the PRO D whose arrows n → m are order
preserving functions between finite ordinals {0 < · · · < n − 1} and
{0 < · · · < m− 1}. We have Mn ∼= D, see [31].

(c) We also introduce the MP (ΣC, EC) of comonoids. The signature ΣC

consists of a comultiplication : 1 → 2 and a counit : 1 → 0.
The equations in EC are as follows.

8

= (A4) = (A5) = (A6)

We name Cm the PRO freely generated by the presentation of comonoids.
Modulo the white vs. black colouring, string diagrams of Cm can be seen
as those of Mn “reflected about the y-axis”. This observation yields
Cm = Mnop.

Remark 2.3 (Models of a PRO). The assertion that (ΣM , EM) is the MP
of monoids—and similarly for other MPs appearing in our exposition—can
be made precise using the notion of model (sometimes also called algebra)
of a PRO. Given a strict monoidal category C, a model of a PRO S in C is
a strict monoidal functor F : S → C. Then LinMod(S,C) is the category of
models of S in C and natural transformations between them.

Turning to monoids, there is a category Monoid(C) whose objects are the
monoids in C, i.e., objects x ∈ C equipped with arrows x⊕x→ x and I → x,
satisfying the usual equations. Given any model F : Mn→ C, it follows that
F(1) is a monoid in C: this yields a functor LinMod(Mn,C) → Monoid(C).
Saying that (ΣM , EM) is the MP of monoids means that this functor is an
equivalence natural in C.

Similar considerations hold for symmetric and cartesian presentations,
introduced below, for which one takes as models symmetric monoidal and
cartesian categories respectively. We refer the reader to [24, 31] for more
information.

2.2. Symmetric Monoidal presentations and PROPs

We now introduce symmetric monoidal presentations, describing alge-
braic structures borne by objects in a symmetric monoidal category. Differ-
ently from monoidal presentations, they come with a built-in, natural sym-
metry , that allows one to express the “swapping” of variables and thus
commutativity of operations. The corresponding categorical notion is the one
of PROP (monoidal product and permutation category [34]): a PROP is just
a PRO which, as a strict monoidal category, is equipped with a symmetric
structure.

Definition 2.4. A (one-sorted) symmetric monoidal presentation (SMP) is
a pair (Σ, E) consisting of a signature Σ and a set of equations E. The
difference from a monoidal presentation is that in E symmetric monoidal

9

Σ-terms appear: these are obtained by composing generators in Σ, the unit
: 1→ 1 and the symmetry : 2→ 2 with ; and ⊕.

As for MPs, an SMP is said to be operadic when all the operations have
coarity 1 and all the equations only involve terms of coarity 1.

A PROP is a symmetric strict monoidal category with objects the natural
numbers, where ⊕ on objects is addition. Morphisms between PROPs are
strict symmetric identity-on-objects monoidal functors: PROPs and their
morphisms form the category PROP. We call a sub-PROP a sub-category of
a PROP that is a PROP with the inclusion functor being a PROP morphism.

The PROP T(Σ,E) freely generated by an SMP (Σ, E) has as its set of
arrows n → m symmetric monoidal Σ-terms n → m modulo the laws of
symmetric strict monoidal categories — Fig. 1 and 2 — and the smallest
congruence (w.r.t. ; and ⊕) containing equations t = t′ for any (t, t′) ∈ E.

Example 2.5.

(a) The PRO P of permutations (Ex. 2.2.(a)) is also a PROP: the unique
generator in the associated monoidal presentation defines the sym-
metry of type 1 + 1 → 1 + 1 and can be used to define arbitrary sym-
metries n + m → m + n. Equations (P1)-(P2) guarantee that this
definition satisfies the laws of symmetric monoidal categories (Fig. 2).

Observe that, as a PROP, P is freely generated by the empty symmetric
monoidal presentation (∅, ∅). P is the initial object in PROP.

(b) The SMP of commutative monoids is defined by the same signature
ΣM as the MP of monoids (Ex. 2.2.(b)). The set of equations ECM

is given by those EM of monoids with the addition of the following
commutativity equation:

= . (A7)

Note the use of the symmetry in the right-hand side of (A7). We name
CMn the PROP freely generated by the SMP of commutative monoids.
It is isomorphic to the PROP F whose arrows n → m are functions
from n to m, where z := {0, 1, . . . , z − 1}.

(c) Dually, one can freely generate the PROP CCm of commutative comonoids
from the signature ΣC of comonoids (Ex. 2.2.(c)) and a set of equations

10

ECC given by the equations EC of comonoids plus the following:

= (A8)

As in the monoidal case, we have CCm ∼= CMnop and also CCm ∼= Fop.

(d) The PROP B of (commutative/cocommutative) bialgebras is generated
by the SMP based on signature ΣM]ΣC and equations ECM]ECC]B,
where B is as follows:

= (A9)

= (A11)

= (A10)

= . (A12)

Remark 2.6. Notice that one can always mimic an SMP (Σ, E) with an
appropriate MP (Σ′, E ′), such that the free PROP T(Σ,E) is isomorphic to the
free PRO S(Σ′,E′). Suppose for instance to aim at the monoidal presentation
of commutative monoids. Differently from the SMP, now the symmetry

must be explicitly added to the signature, which becomes { , , }.
Moreover, one needs to add to (A1), (A2) and (A7) equations that guarantee
naturality of the symmetric structure: these will be (P1), (P2) and

= = = = .

One can verify that the PRO freely generated by this MP is the same as the
PROP CMn of Example 2.5(b). This observation suggests a generic construc-
tion of PROPs in terms of PROs “interacting with a symmetry”: we shall
make this precise in Section 5, using the concept of distributive law of PROs
(Section 3).

2.3. Cartesian presentations and Lawvere Categories

An additional layer of structure is introduced when passing from sym-
metric monoidal to cartesian presentations, adapted to describe algebraic
structures borne by objects in a cartesian category. The associated categor-
ical concept is the one of Lawvere category [33, 29].

Definition 2.7. A (one-sorted) cartesian presentation (Σ, E) consists of a
signature Σ = {o1 : n1 → 1, . . . , ok : nk → 1} and a set E of equations between
cartesian Σ-terms, which are defined as follows:

11

• for each i ∈ N, the variable xi is a cartesian term;
• suppose o : n→ 1 is a generator in Σ and t1, . . . , tn are cartesian terms.

Then o(t1, . . . , tn) is a cartesian term.
A Lawvere category is a cartesian category (i.e., with finite products)

whose objects are the natural numbers. A cartesian presentation (Σ, E) freely
generates a Lawvere category L(Σ,E) as follows. Arrows n → m are lists
〈t1, . . . , tm〉 of cartesian Σ-terms quotiented by E, such that, for each ti, only
variables among x1, . . . , xn appear in ti. Composition is by substitution:(

n
〈t1,...,tm〉−−−−−→ m

)
;
(
m
〈s1,...,sz〉−−−−−→ z

)
= n

〈s1[ti/xi|1≤i≤m],...,sz [ti/xi|1≤i≤m]〉−−−−−−−−−−−−−−−−−−−−−→ z

where t[t′/x] denotes the cartesian term t in which all occurrences of the
variable x have been replaced with t′.

The product × in L(Σ,E) is defined on objects by addition and on arrows
by list concatenation and suitable renaming of variables:(

n
〈t1,...,tm〉−−−−−→ m

)
×
(
z
〈s1,...,sl〉−−−−−→ l

)
= n+ z

〈t1,...,tm,s1[xi+m/xi|1≤i≤z],...,sl[xi+m/xi|1≤i≤z]〉−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ m+ l.

We use notation ovar(t) for the list of occurrences of variables appearing
(from left to right) in t and, more generally, ovar(t1, . . . , tm) for the list
ovar(t1) :: · · · :: ovar(tm). Also, |l| ∈ N denotes the length of a list l. We
say that a list 〈t1, . . . , tm〉 : n→ m is linear if each variable among x1, . . . , xn
appears exactly once in ovar(t1, . . . , tm).

Any Lawvere category is also a PROP, with the product inducing a sym-
metric monoidal structure. For a freely generated Lawvere category L(Σ,E),
the symmetry n+m→ m+n is defined as the list 〈xn+1, . . . , xn+m, x1, . . . , xn〉.
Moreover, note that the unique PROP morphism P → L(Σ,E) given by ini-
tiality of P in PROP sends a permutation p : n→ n to 〈xp−1(1), . . . , xp−1(n)〉.

Example 2.8. The SMP (ΣM , ECM) of commutative monoids can be also
thought of as a cartesian presentation. Indeed all the operations in ΣM have
coarity 1 and ECM only involves cartesian Σ-terms built from them, e.g. (A2)
becomes (, x1) = x1 and (A7) becomes (x2, x1) = (x1, x2). The
presentation (ΣM , ECM) generates the Lawvere category LΣM,EM

whose arrows
n → m are lists 〈t1, . . . , tm〉 of elements of the free commutative monoid on
{x1, . . . , xn}.

12

Remark 2.9. Contrarily to what Example 2.8 may suggest, cartesian pre-
sentations are not a subclass of symmetric monoidal presentations: in fact,
the two are incomparable. On the one hand, a symmetric monoidal presenta-
tion (Σ, E) is cartesian if and only if all generators in Σ have coarity 1 and,
for all equations t = s in E, t and s are Σ-terms with coarity 1. Under these
conditions, there is a canonical way to interpret any Σ-term n→ m as a list
of m cartesian Σ-terms on variables x1, . . . , xn. Below, o ranges over Σ:

: 1→ 1 7→ 〈x1〉 : 2→ 2 7→ 〈x2, x1〉

o : n→ 1 7→ 〈 o (x1, . . . , xn)〉.

The inductive cases are defined using the operations ; and ⊕ on lists given
in Definition 2.7. Note that Σ-terms always denote (lists of) linear carte-
sian terms. This explains why, conversely, not all the cartesian presentations
are symmetric monoidal: their equations possibly involve non-linear Σ-terms,
which are not expressible with (symmetric monoidal) Σ-terms. The subtlety
here is that, in a sense, we can still simulate a cartesian presentation on
signature Σ with a symmetric monoidal presentation, which however will be
based on a larger signature Σ′, recovering the possibility of copying and dis-
carding variables by the use of additional generators. This is analogous with
the “encoding” of symmetric monoidal presentations in monoidal presenta-
tions, described in Remark 2.6. It will be made precise in Section 6, using
distributive laws of PROPs introduced in the next section.

3. Distributive Laws

A basic operation on monoidal presentations (Σ, E) and (Σ′, E ′) is their
sum (Σ] Σ′, E] E ′). In PRO, the PRO generated by (Σ] Σ′, E] E ′) is
the coproduct T(Σ,E) + T(Σ′,E′) of the two freely generated PROs.

The sum T(Σ,E) +T(Σ′,E′) is the least interesting way of combining presenta-
tions, because there are no equations that express compatibility between the
algebraic structures in (Σ, E) and (Σ′, E ′). Interactions between operations is
a standard pattern in algebra: e.g. a ring is given by a monoid and an abelian
group, subject to equations that ensure that the former distributes over the
latter. Similarly, the equations of bialgebras (Example 2.5 (d)) describe the
interplay of a commutative monoid and a cocommutative comonoid. Func-
tions between finite sets, which can always be decomposed as a surjection
followed by an injection, are another example.

13

In [31] Lack shows how these phenomena can be uniformly described as a
composition operation, definable both for PROs and PROPs 3. The concep-
tual switch is to understand these categories as monads, and the composition
operation as a distributive law. The monads are the objects of a certain bi-
category [4], as in the classical work of Street [42]4.

Definition 3.1. A monad on an object x of a bicategory B is a 1-cell
F : x → x with 2-cells ηF : idx → F and µF : F ; F → F (called the unit
and the multiplication respectively) making the following diagrams–in which
we suppress the associativity isomorphisms—commute.

F

id **

FηF// F ; F
µF ��

FηFFoo

idttF
(2)

F ; F ; F
µFF ��

FµF // F ; F
µF��

F ; F µF // F
(3)

A morphism between monads x
F−→ x and x

G−→ x is a 2-cell θ : F → G
making the following diagrams commute5.

idx
ηF ��

ηG

""F θ // G
(4)

F ; F
µF ��

θθ // G ; G
µG��

F θ // G
(5)

An epimorphic monad morphism is called a monad quotient.

For B = Cat, the above definition yields the standard notion of monad
as an endofunctor with a pair of natural transformations.

Something interesting happens for the case of the bicategory B = Span(Set)

whose objects are sets, 1-cells are spans A
f←− B

g−→ C of functions with com-
position defined by pullback

Fr′

ww
g′

''
Bf

ww
g

''
Dr

ww
s
''

A C E

3One can use the same techniques to define composition of Lawvere categories, see [19].
We will not cover this case as it is not needed for our developments.

4Actually, Street worked in a 2-category, but the same presentation can be developed
in any bicategory with the obvious, minor modifications [31, §3.1].

5A notion of morphism can be defined also between monads on different objects, like
in [42]. We will not need that level of generality here.

14

and 2-cells are span morphisms, i.e. functions α : B → B′ making the two
triangles commute:

Bf

vv
g

((
α
��

A C

B′.f ′

hh

g′

66

Monads in Span(Set) are precisely the small categories. Indeed, a monad

(F , η, µ) in Span(Set) consists of an endospan Ob
dom←−− Ar

cod−−→ Ob , where Ob
serves as the set of objects, and Ar as the set of arrows. The remaining data
in the span is the domain/codomain maps Ar ⇒ Ob . The unit η : id → F
is a span morphism associating an identity arrow to each object (below left).
The multiplication µ : F ; F → F is a span morphism defining composition

for any two arrows a
f−→ b

g−→ c in Ar (below right).

Ob
id
||

η

��

id
""

Ob Ob

Ar
dom

bb
cod

<<

Pp1

vv

µ

{{

p2

((
Ardom

vv
cod
((

Ardom
vv

cod
((

Ob Ob Ob

Ar
dom

ii

cod

55

By thinking of categories as monads, one can define the composition of cat-
egories with the same set of objects as monad composition by a distributive
law in Span(Set). This phenomenon is studied in [37].

Definition 3.2. Let (F , ηF , µF), (G, ηG, µG) be monads in a bicategory B on
the same object. A distributive law of F over G is a 2-cell λ : F ; G → G ; F
in B making the following—in which we again omit associativity—commute.

F
FηG
��

ηGF

$$
F ; G λ // G ; F

G
ηFG
OO

GηF

::

F ; G ; G
FµG

��

λG // G ; F ; G Gλ // G ; G ; F
µGF
��

F ; G λ // G ; F

F ; F ; G
µFG

OO

Fλ
// F ; G ; F

λF
// G ; F ; F

GµF
OO

(6)

A distributive law λ : F ; G → G ; F yields a monad G ; F with the following

15

unit and multiplication:

ηG ;F : id
ηF−→ F ηGF−−→ G ; F

µG ;F : G ; F ; G ; F GλF−−→ G ; G ; F ; F µGFF−−−→ G ; F ; F GµF−−→ G ; F
(7)

Let us verify how the abstract definition works for the case of categories.
Pick categories C and D with the same set Ob of objects, seen as monads

Ob
domC←−−− ArC

codC−−→ Ob and Ob
domD←−−− ArD

codD−−→ Ob in Span(Set). A dis-
tributive law λ : C ; D→ D ; C is a span morphism

.
vv

λ

zz

((
ArCdomC

xx
codC
&&

ArDdomD
xx

codD
&&

Ob Ob Ob

ArD
domD

ff

codD

88

ArC
domC

ff

codC

88

.

hh 66

mapping composable pairs a
∈C−→ ∈D−→ b to composable pairs a

∈D−→ ∈C−→ b. As
described in (7), λ allows to define a monad structure on D ; C. That means,

λ yields a category D ; C whose arrows a→ b are composable pairs a
∈D−→ ∈C−→ b

of arrows of D, C and composition is defined as(
a

f∈D−−→ g∈C−−→ b
)

;
(
b
f ′∈D−−−→ g′∈C−−→ c

)
:=

(
a

f∈D−−→ λ(
g∈C−−→ f ′∈D−−−→)

g′∈C−−→ c
)
.

Composition of PROs works analogously to composition of categories. In
order to take into account the monoidal structure, one need to pass from
Span(Set) to Span(Mon), whose objects are monoids and 1-cells are spans
in the category Mon of monoids. Monads in Span(Mon) are small strict
monoidal categories and thus PROs are monads on the monoid N of natural
numbers. Composing two PROs via a distributive law again yields a PRO.

The case of PROPs requires yet another refinement, in order to take
into account the symmetries. An appropriate setting that achieves this is
the bicategory Bimod(Span(Mon)) whose objects are small strict monoidal
categories and 1-cells are the bimodules in Span(Mon). PROPs are monads
on the object P of Bimod(Span(Mon)).

16

We shall gloss over further details, as they are out of the scope of this pa-
per — we refer to [31] and [43, § 2.4] for an extensive treatment. The simpler
setting of composition of mere categories should provide enough guidance to
follow the rest of our exposition.

It is important for our purposes to remark how composition works for
PROs SΣ,E, SΣ′,E′ generated by MPs, say (Σ, E) and (Σ′, E ′). The PRO
SΣ,E ; SΣ′,E′ induced by a distributive law λ : SΣ′,E′ ; SΣ,E → SΣ,E ; SΣ′,E′ will
also enjoy a presentation by generators and equations, consisting of the sum
(Σ] Σ′, E] E ′) plus the equations Eλ arising from the the distributive
law. The set Eλ is simply the graph of λ, now seen as a set of directed

equations (
∈S

Σ′,E′−−−−→ ∈SΣ,E−−−→) ≈ (
∈SΣ,E−−−→

∈S
Σ′,E′−−−−→) telling how monoidal Σ′-terms

modulo E ′ distribute over monoidal Σ-terms modulo E. In fortunate cases,
it is possible to present Eλ by a simpler, or even finite, set of equations, thus
giving a sensible axiomatisation of the compatibility conditions expressed by
λ. This is the case for both examples considered below.

Example 3.3.

(a) The PRO of Mn of monoids, or equivalently the PRO of D of finite
ordinals and monotonic functions (Example 2.2(b)), can be seen as
the composite SGr ; S . Here SGr is the PRO of semigroups, freely
generated by ({ }, {(A1)}), whereas S is the PRO freely generated
by ({ }, ∅). The witnessing distributive law λ : S ; SGr→ SGr ; S
is described in [31, Example 3.13]: its associated set Eλ of equations is
finitely presentable by (A2) and (A3). These additional equations say
that acts as the unit for the semigroup, which is then a monoid.
This explains why SGr ; S ∼= Mn.

(b) The PROP of monoids is none other than P ; Mn, where P is the PRO
of permutations (Example 2.5(a)). The underlying distributive law of
PROs Mn ; P → P ; Mn — see [31, Example 3.14] — is finitely pre-
sentable by the four equations displayed in Remark 2.6. This is a
special case of a more general situation described in Theorem 5.1: op-
eradic monoidal presentations can be considered as symmetric monoidal
through composition with P, via a distributive law. The PROP of com-
mutative monoids CMn can then be obtained by quotienting P ; Mn with
equation (A7).

17

Analogous considerations hold for distributive laws between PROPs freely
generated by SMPs. We illustrate a few examples below.

Example 3.4.

(a) There is a PROP counterpart of Example 3.3(a). The PROP F of
functions can be described as the composite of PROPs for surjections
and injections. Let In be the PROP whose arrows n→ m are injective
functions from n to m. The PROP Su of surjective functions is defined
analogously. There is a distributive law λ : In ; Su → Su ; In defined by

epi-mono factorisation: it maps a composable pair
∈In−−→ ∈Su−−→ to a com-

posable pair
∈Su−−→ ∈In−−→ [31]. The resulting PROP Su ; In is isomorphic to

F because any function in F can be uniquely factorised (up-to permuta-
tion) as a surjection followed by an injection. In more syntactic terms,
using the isomorphism F ∼= CMn, this result says that CMn is the com-
posite Mu ; Un, where Mu ∼= Su is the PROP freely generated by the
SMP ({ }, {(A1), (A7)}) and Un ∼= In by the SMP ({ }, ∅). The
distributive law λ : In ; Su → Su ; In is then presented by the remaining
equation (A2) of CMn, which indeed describes how the generator of
Un can be moved past the one of Mu.

(b) The composition of CCm and CMn yields the PROP B of commuta-
tive bialgebras. First, because CMn ∼= F and CCm ∼= Fop, we can ex-
press a distributive law λ : CMn ; CCm → CCm ; CMn as having the
type F ; Fop → Fop ; F. This amounts to saying that λ maps cospans

n
f∈F−−→ g∈F←−− m to spans n

p∈F←−− q∈F−−→ m. Defining this mapping via (cho-
sen) pullback in F satisfies the conditions of distributive laws [31]. One
can now read the equations arising by the distributive law from pullback
squares in F. For instance, consider the pullback square in F below
left. The second diagram is obtained from the pullback by applying the
isomorphisms F ∼= CMn and Fop ∼= CCm, and illustrates an equation
induced by the distributive law.

1 1
$$

2

::

0

dd
�� +3 2

::

$$
0

0

dd ::

0

:: yields ; = ;

In fact, Lack [31] shows that the equations presenting CCm ; CMn arise
from (those of CCm + CMn and) just four pullback squares, yielding

18

equations (A9)-(A12). Therefore, CCm ; CMn is isomorphic to the
PROP B of bialgebras encountered in Example 2.5 (d). Furthermore,
these PROPs have a “concrete” descriptions as Fop ; F. In the ter-
minology of [4], one can see Fop ; F as the classifying category of the
bicategory Span(F), obtained by identifying the isomorphic 1-cells and
forgetting the 2-cells.

A convenient way of defining a distributive law is through a factorisation
system. There is a tight relationship between the two notions: distributive
laws of small categories are in 1-1 correspondence with so-called strict fac-
torisation systems [37], in which factorisations must be specified uniquely on
the nose, rather than merely up-to isomorphism. The same correspondence
holds for distributive laws of PROs. Distributive laws of PROPs correspond
instead to a more liberal kind of factorisation system, for which decompo-
sitions are up-to permutation. As this perspective will be useful later, we
recall the following results from Lack [31].

Proposition 3.5 ([31], Theorem 3.8). Let S be a PRO and S1, S2 be sub-

PROs of S. Suppose that each arrow n
f∈S−−→ m can be uniquely factorised as

n
g1∈S1−−−→ g2∈S2−−−→ m. Then there exists a distributive law of PROs λ : S2 ; S1 →

S1 ; S2, defined by associating to a composable pair
f∈S2−−−→ g∈S1−−−→ the factorisa-

tion of f ; g, yielding S ∼= S1 ; S2.

Proposition 3.6 ([31], Theorem 4.6). Let T be a PROP and T1, T2 be

sub-PROPs of T . Suppose that each arrow n
f∈T−−→ m can be factorised as

n
g1∈T1−−−→ g2∈T2−−−→ m uniquely up-to permutation, that is, for any other decom-

position n
h1∈T1−−−→ h2∈T2−−−→ m of f , there exists permutation

p∈P−−→ such that the
following diagram commutes.

g2

%%
g1

99

h1

//
p
OO

h2

// .

Then there exists a distributive law of PROPs λ : T2 ; T1 → T1 ; T2, defined by

associating to a composable pair
f∈T2−−−→ g∈T1−−−→ the factorisation of f ; g, yielding

T ∼= T1 ; T2.

4. Operations on Distributive Laws

This section illustrates various ways of manipulating distributive laws
that will be useful in the sequel.

19

4.1. Quotient of a Distributive Law

Definition 3.1 introduced the notion of quotient θ : F → G of a monad
F : an example of a monad quotient is the situation when the monad G is
obtained by imposing additional equations on the presentation of F . As one
may expect, distributive laws are compatible with monad quotients, provided
that the law respects the additional equations. This folklore result appears
in various forms in the literature: [14] gives it for distributive laws of endo-
functors over monads and [6, 13] for distributive laws of monads. All these
references concern distributive laws in Cat. For our purposes, it is useful to
state the result for arbitrary bicategories.

Proposition 4.1. Suppose that λ : F ; H → H ; F is a distributive law in a
bicategory B.

(i) If θ : F → G is a monad quotient and γ : G ; H → H ; G a 2-cell of B
making the following diagram commute

F ; H θH //

λ
��

G ; H
γ
��

H ; F Hθ //H ; G
(8)

then γ is a distributive law of monads.

(ii) If θ : H →M is a monad quotient and δ : F ; M→M ; F a 2-cell of
B making the following diagram commute

F ; H Fθ //

λ
��

F ; M
δ
��

H ; F θF //M ; F
(9)

then δ is a distributive law of monads.

Proof. For statement (i), the diagrams for compatibility of γ with unit
and multiplication of G commute because θ is a monad morphism and (8)
commutes. For compatibility of γ with unit and multiplication of H, one
needs to use commutativity of (8) and the fact that θ is epi. The proof of
statement (ii) is analogous. �

20

It is now useful to instantiate the result to the case of distributive laws
of PROs and of PROPs. It turns out that it suffices to check compatibility
of a distributive law with the equations determining the monad quotient.

Proposition 4.2. Let T , T ′ be PROs freely generated by (Σ, E) and (Σ, E ′)
respectively, with E ⊆ E ′.

(i) Let λ : T ; S → S ; T be a distributive law such that, if l = r is an

equation of E ′, then λ(
idn⊕l⊕idm∈T−−−−−−−−→ d∈S−−→) = λ(

idn⊕r⊕idm∈T−−−−−−−−→ d∈S−−→) for all
d, n and m. Then there exists a distributive law γ : T ′ ; S → S ; T ′
presented by the same equations as λ, i.e., Eγ = Eλ.

(ii) Let χ : S ; T → T ; S be a distributive law such that, if l = r is an

equation of E ′, then χ(
d∈S−−→ idn⊕l⊕idm∈T−−−−−−−−→) = χ(

d∈S−−→ idn⊕r⊕idm∈T−−−−−−−−→) for all
d, n and m. Then there exists a distributive law δ : S ; T ′ → T ′ ; S
presented by the same equations as χ, i.e., Eδ = Eχ.

Both statements hold also starting from the PROPs freely generated by (Σ, E),
(Σ, E ′) and distributive laws of PROPs.

Proof. We first focus on statement (i), splitting the proof in two parts.
First, we show that, given our assumption about compatibility of λ with E ′,
the following, stronger statement follows:

if c1 = c2 follows from the equations of E ′,

then λ(
c1∈T−−−→ d∈S−−→) = λ(

c2∈T−−−→ d∈S−−→) for all d. (◦)
In order to show (◦), without loss of generality we can assume that c1 = c2

holds because of the application of a single equation l = r of E ′, that means,

c1 = c4lc3 and c2 = rc3 c4 .

Because λ is a distributive law of PROs, it preserves composition in T and

S. That means, the computation of λ(
c1∈T−−−→ d∈S−−→) goes componentwise: if

λ
(

c4 d

2 T 2 S)
=

d0 c04

2 T2 S

and λ
(

l d0

2 T 2 S)
=

d00 c5

2 T2 S

(10)

21

then

λ
(

c3 c4 dl

2 T 2 S)
= λ

(
c3 d00

2 T 2 S)
;

2 T

c5
;

c04

2 T

.

Because our assumption guarantees that λ in (10) yields the same result with
r in place of l, we just proved (◦).

We now exploit (◦) to complete the proof (i). First, there is a PRO
morphism θ : T → T ′ defined by quotienting string diagrams in T byE ′. This
is a monad quotient in the bicategory Span(Mon) where PROs are monads.

We now define another 2-cell γ : T ′ ; S → S ; T ′ as follows: given
e∈T ′−−−→ c∈S−−→,

pick any
d∈T−−→ such that θ(d) = e and let

c′∈S−−→ d′∈T−−−→ be λ(
d∈T−−→ c∈S−−→). Define

γ(
e∈T ′−−−→ c∈S−−→) as

c′∈S−−→ θ(d′)∈T ′−−−−−→. γ is well-defined because if θ(d1) = θ(d2) then

E ′ implies that d1 = d2 and thus, by assumption (◦), λ(
d1−→ c−→) = λ(

d2−→ c−→).
Now, λ, γ and θ satisfy the assumptions of Proposition 4.1(i). In partic-

ular, (8) commutes by definition of γ in terms of λ and θ. The conclusion of
Proposition 4.1 guarantees that γ is a distributive law. By construction, γ
is presented by the same equations as λ.

The proof of statement (ii) is analogous and uses Proposition 4.1(ii).
Finally, the same argument yields the two statements for PROPs in place of
PROs. �

We will use Proposition 4.2 in the next two sections (Theorem 5.1 and
Lemma 6.5).

4.2. Dual of a Distributive Law

For later reference, we observe that, both for PROPs and PROs, a dis-
tributive law λ : T ; S → S ; T canonically induces one λ′ : Sop ; T op →
T op ; Sop defined as:

∈Sop−−−→ ∈T op−−−→
.

λ′

((

=
∈S←− ∈T←−− � λ // ∈T←−− ∈S←− =

∈T op−−−→ ∈Sop−−−→

Proposition 4.3. λ′ : Sop ; T op → T op ; Sop is a distributive law of PRO(P)s.

22

Proof. The main observation is that the unit and multiplication of Sop and
of T op can be expressed in terms of those of S and T in the same way as
λ′ is defined from λ. Then, using the fact that λ is a distributive law, it is
immediate to check that λ′ makes diagrams (6) commute. �

5. PROPs as Composed PROs

In Example 3.3(b) we saw that the PROP of monoids can be obtained
from a distributive law Mn ; P → P ; Mn of PROs. In this section we gener-
alise this situation: any operadic monoidal presentation leads to a symmetric
monoidal presentation by composition with the PRO of permutations. This
is the conclusion of Theorem 5.1, the main result of this section.

Theorem 5.1. Let (Σ, E) be a operadic monoidal presentation and S(Σ,E)

and T(Σ,E) be its freely generated PRO and PROP respectively. Then there
exists a distributive law S(Σ,E) ; P→ P ; S(Σ,E) of PROs presented by equations

o = o (N1) o = o (N2)

for each o ∈ Σ, such that P ; S(Σ,E) is a PROP. Moreover, there is an isomor-
phism of PROs T(Σ,E)

∼= P ; S(Σ,E) that preserves the symmetry structure; i.e.
it is also an isomorphism of PROPs.

Before we give the proof, note that the assumption that (Σ, E) is operadic
is crucial: e.g. if Σ included an operation o of coarity 2, there is no canonical
way of putting o ; in the factorised form P ; S(Σ,E): indeed the symmetry
cannot, in general, be moved from the right to the left of o. Moreover, as we
shall see in the proof below, the assumption that E only involves terms of
coarity 1 is important to ensure that it is respected by (N1)-(N2).

Proof. By construction, the PROP T(Σ,E) freely generated by (Σ, E) is the
same thing as the PRO S(Σ′,E′) freely generated by the signature Σ′ :=
Σ] { } and equations E ′ := E] {(P1), (P2), (N1), (N2) | o ∈ Σ}.
To see this, note that the addition of and equations E ′ amounts to
a presentation of the laws of symmetric monoidal categories: besides the
standard (P1), equations (P2),(N1) and (N2) ensure that symmetries built
from are natural. To prove the theorem, it thus suffices to show that:

S(Σ′,E′) results from a distributive law of type

S(Σ,E) ; P→ P ; S(Σ,E) presented by (N1)-(N2). (†)

23

In fact, we can further simplify our task, by throwing equations away. We
claim that (†) follows from the following statement, where Υ = { }:

S(Σ′,{(N1),(N2)}) arises from a distributive law of type

SΣ ; SΥ → SΥ ; SΣ presented by (N1)-(N2). (‡)
To see that (‡) ⇒ (†), note that we can use Proposition 4.2 to lift a

distributive law χ : SΣ ; SΥ → SΥ ; SΣ to λ : S(Σ,E) ; P→ P ; S(Σ,E) in two steps:

(a) first, if χ : SΣ ; SΥ → SΥ ; SΣ is compatible with the equations (P1)-
(P2) of P, we can “upgrade” it to γ : SΣ ; P → P ; SΣ by virtue of
Proposition 4.2(ii);

(b) second, if γ : SΣ ; P → P ; SΣ is compatible with E, we can upgrade it
to λ : S(Σ,E) ; P→ P ; S(Σ,E), by virtue of Proposition 4.2(i).

The two compatibility conditions above are easy to verify, using the as-
sumption that (Σ, E) is operadic. We give details in (a′) and (b′) below.

(a′) For (a), the assumption of Proposition 4.2(ii) to be checked amounts

to verify that, for any
c∈SΣ−−−→ and naturals n,m, χ(

c−→ idn⊕l1⊕idm−−−−−−−→) =

χ(
c−→ idn⊕r1⊕idm−−−−−−−→) and χ(

c−→ idn⊕l2⊕idm−−−−−−−→) = χ(
c−→ idn⊕r2⊕idm−−−−−−−→), where l1 =

r1 and l2 = r2 are the equations (P1) and (P2) respectively. Because
Σ is operadic, c must be of shape c1 ⊕ . . . ⊕ ck, where each ci has
coarity 1. Because any distributive law commutes with the monoidal
product ⊕, our task reduces to check compatibility only for diagrams
ci, ci+1, ci+2 of coarity 1 that are connected to l1, r1 and to l2, r2, i.e. we

need to verify that χ(
ci⊕ci+1−−−−→ l1−→) = χ(

ci⊕ci+1−−−−→ r1−→) and χ(
ci⊕ci+1⊕ci+2−−−−−−−−→ l2−→

) = χ(
ci⊕ci+1⊕ci+2−−−−−−−−→ r2−→). This is straightforward; for instance, for the

equation l1 = r1 we have:

(ci ⊕ ci+1) ; l1 =
ci+1

ci
� χ //

ci+1

ci

(P1)-(P2)
=

(ci ⊕ ci+1) ; r1 =
ci+1

ci � χ //
ci+1

ci

24

where χ has been computed by repeated application of the following

consequences of (N1)-(N2), holding for any
c∈SΣ−−−→:

oc = oc oc = oc (11)

(b′) For (b), the assumption of Proposition 4.2(i) to check is that, for any

naturals n, m, permutation
p∈P−−→ and equation l = r in E, γ(

idn⊕l⊕idm−−−−−−→ p−→
) = γ(

idn⊕r⊕idm−−−−−−→ p−→). Observe that l and r both have coarity 1, because
E is operadic. Now, by construction γ is presented by the same equa-
tions (N1)-(N2) as χ, thus the action of γ on (idn ⊕ l ⊕ idm) ; p and
on (idn ⊕ r ⊕ idm) ; p also amounts to a repeated application of (11).
The key observation is that, in the process, instantiating c to the sub-
diagram l or to r does not make any difference: they are treated as
black boxes, connectivity being the only relevant information. It is

thus evident that γ(
idn⊕l⊕idm−−−−−−→ p−→) = γ(

idn⊕r⊕idm−−−−−−→ p−→).

So far, we proved that (‡) ⇒ (†); now we can conclude the proof of the
main statement by showing (‡). As S(Σ′,{(N1),(N2)}) is the quotient of SΥ +SΣ by
(N1)−(N2), by Proposition 3.5 it suffices to construct a (SΥ, SΣ)-factorisation
system on S(Σ′,{(N1),(N2)}). We define it via a terminating and convergent rewrit-
ing system on S(Σ′,{(N1),(N2)}) (in the sense of Lafont [32]) transforming any

diagram into a decomposed normal form
∈SΥ−−→ ∈SΣ−−→. The rewriting system

is defined by taking as rules the equations (N1)-(N2), oriented from left to
right, for each o ∈ Σ. Termination is witnessed by the following order: given
a diagram d of S(Σ′,{(N1),(N2)}), associate with each sub-diagram o , for some
o ∈ Σ, the number of symmetries that are reachable from its output; the
sum of these numbers is the value associated to d, which decreases at each
application of a rewriting rule. For confluence, there is only one critical pair
to check, for any two operations o1, o2 ∈ Σ. For the sake of clarity, we show
joinability below for o1, o2 of arity 2, the generalisation to arbitrary arities

25

being straightforward.

o1

o2

o1o2

o1

o2

o1

o2

o2
o1

o2
o1

o2

o1

(N1) (N2)

Laws of
mon. cat.

=

(N1)

(N1)

(N2)

(N2)

Termination and confluence yield uniqueness of the induced factorisation,
hence by Proposition 3.5 a distributive law with the desired properties. �

For later reference we state a useful corollary of Theorem 5.1, yielding
a factorised form for the PROP CCm of commutative comonoids (Exam-
ple 2.5(c)). Note that the signature of CCm is not operadic. However, it is
dual to an operadic signature, namely the one of commutative monoids.

Recall from Example 2.2 the PROs Mn and Cm freely generated by
the monoidal presentations (ΣM , EM) and (ΣC, EC) of (non-commutative)
monoids and comonoids respectively.

Proposition 5.2. There is a distributive law P ; Cm⇒ Cm ; P of PROs s.t.
Cm ; P is a PROP and CCm is isomorphic to its quotient by (A8).

Proof. As (ΣM , EM) is operadic, Theorem 5.1 yields a distributive law
λ : Mn ; P ⇒ P ; Mn of PROs such that P ; Mn is a PROP. Proposition 4.3
yields from λ another distributive law γ : Pop ; Mnop ⇒ Mnop ; Pop . Using
that, Cm ∼= Mnop and P ∼= Pop , γ has in fact type P ; Cm ⇒ Cm ; P and is
presented by (N1)op-(N2)op , for o ∈ { , }, that means:

= = = = .

Cm ; P is a PROP: symmetries are natural because of (N1)op-(N2)op . Also,
its quotient by (A8) is by construction isomorphic to CCm. �

26

6. Lawvere Categories as Composed PROPs

This section connects Lawvere categories and a certain class of distribu-
tive laws of PROPs. For a sketch of our approach, recall Example 2.8, de-
scribing the cartesian presentation of commutative monoids. First, note that
the Lawvere category LΣM,ECM

includes the PROP CMn freely generated by
(ΣM , ECM). Indeed, any string diagram of CMn can be interpreted as a list
of terms following the recipe of Remark 2.9. For instance,

: 4→ 3 is interpreted as 〈 (x2, (x1, x3)), x4, 〉 : 4→ 3

As we observed above, string diagrams of CMn express linear terms. What
makes LΣM,EM

more general is the ability to copy and discard variables.
Indeed, as in any monoidal category where⊕ is the cartesian product, LΣM,EM

comes equipped with a canonical choice of “copy” and “discard” operations

cpy(n) := 〈x1, . . . , xn, x1, . . . , xn〉 : n→ 2n dsc(n) := 〈 〉 : n→ 0 n ∈ N

natural in n, which satisfy the expected equations: copying is commutative
and associative; copying then discarding is the same as not doing anything
— see e.g. [23, 18].

How can we mimic the copy and discard structure in the language of
PROPs? First, for each n > 1 one can define cpy(n) and dsc(n) in terms
of cpy(1) and dsc(1), which can therefore be regarded as the only funda-
mental operations6. Also, the equations that they satisfy amount to saying
that cpy(1) is the comultiplication and dsc(1) the counit of a commutative
comonoid on 1. Therefore, they are the generators of the PROP CCm:

: 1→ 2 : 1→ 0.

Following this line of thought, it is clear that CMn and CCm “live” inside
LΣM,ECM

. We claim that these two PROPs provide a complete description of
LΣM,ECM

, that means, any arrow of LΣM,ECM
can be presented diagrammati-

cally as an arrow of CCm followed by an arrow of CMn. For instance:

〈 (x2, (x1, x4)), x1, 〉 : 4→ 3 corresponds to

2 CCm 2 CMn

: 4→ 3

6For n = 0, both operations are equal to the identity on 0.

27

Observe that the diagram is of the form
∈CCm−−−→ ∈CMn−−−→. Intuitively, CCm is

deputed to capture the interplay of variables — in this case, the fact that x1

is copied and x3 is unused (discarded) — and CMn describes the syntactic
tree of the terms. Of course, for this factorisation to be possible in general,
we need additional equations to account for the composition of diagrams.
For instance:

〈 (x1, x2), x1〉 ; 〈x1, (x1, x2)〉 = 〈 (x1, x2), ((x1, x2), x1)〉.

;
?
=

The second equality holds if we use equation (A10) of the SMP of bialgebras
(Example 2.5(d)). Thus the example suggests that composition by substi-
tution in LΣM,EM

can be seen at the diagrammatic level through the use of
bialgebra equations, which as we know from Example 3.4.(b) present the
composite PROP CCm ; CMn, defined by the “pullback” distributive law.
Thus, it would seem that LΣM,ECM

∼= CCm ; CMn, i.e. the Lawvere category
of commutative monoids is isomorphic, as a PROP, to the PROP of com-
mutative bialgebras. This is indeed the case, and as we shall show below.

Theorem 6.1. Suppose (Σ, E) is a cartesian SMP and T(Σ,E) is its freely gen-
erated PROP. Then we have an isomorphism of PROPs L(Σ,E)

∼= CCm ; T(Σ,E),
where T(Σ,E) ; CCm→ CCm ; T(Σ,E) is the distributive law presented by the fol-
lowing equations, for each o ∈ Σ:

o = (Lw1) o =
o

o
. (Lw2)

Before moving to the proof of Theorem 6.1, we show its significance by
revisiting some well-known presentations in terms of our result.

Example 6.2.

(a) Theorem 6.1 instantiated on the SMP CMn of commutative monoids
(Example 2.5(b)) results with (Lw1)-(Lw2) being the bialgebra equa-
tions (A9)-(A12). The isomorphism B ∼= CCm ; CMn (Example 3.4.(b))
is an immediate consequence and thus the Lawvere category of commu-
tative monoids—seen as a PROP—is the PROP of bialgebras.

28

(b) As forecast by Remark 2.9, not every Lawvere category is a composite.
For instance, the cartesian presentation (ΣG, EG) of abelian groups ex-
tends the one (ΣM , EM) of commutative monoids with an inverse op-
eration : 1 → 1 and a non-linear equation (x, (x)) = .
Here Theorem 6.1 still yields useful information about the structure of
the resulting Lawvere category. For instance, it means that L(ΣG,EG),
seen as a PROP, is isomorphic to the PROP CCm ; TΣG,EM

quotiented
by the above non-linear equation, which rendered as string diagrams is:

= .

Interestingly, the result of this quotient is isomorphic to the PROP of
integer matrices, see e.g. [12] and its models in a symmetric monoidal
category are the Hopf algebras [22], with the antipode.

(c) In [26] Fritz presents the category of finite sets and probabilistic maps
using generators and equations. The resulting Lawvere category LProb

can be decomposed following the scheme of Theorem 6.1: there is a lin-
ear part (ΣP , EP) of the presentation — given by binary convex combi-
nations ΣP = { � : 2→ 1 | λ ∈ [0, 1]} and suitable associativity and
commutativity laws in EP , a commutative comonoid structure, and the
two interact according to (Lw1)-(Lw2). This interaction yields a com-
posite PROP CCm ; T(ΣP ,EP) which, quotiented by non-linear equations

0 = and � = , yields LProb.
7

Remark 6.3. It is instructive examine the ramifications of Theorem 6.1 for
models. Let (Σ, E) be as in the statement of the theorem. We recalled models
of a PRO in Remark 2.3. Analogously, there is a category SLinMod(T(Σ,E),C)
of models of the PROP T(Σ,E) in a symmetric strict monoidal category C, with
objects given by symmetric strict monoidal functors T(Σ,E) → C.

For C cartesian, models of the Lawvere category L(Σ,E) are cartesian
(i.e., finite-products preserving) functors L(Σ,E) → C, forming a category
CartMod(L(Σ,E),C). Now, we have that models of L(Σ,E) in C cartesian are

7In fact, the Lawvere category in [26] has finite coproducts, while our LProb is based on
finite products. This is just a matter of co-/contra-variant presentation of the same data:
one can switch between the two by “mirroring” diagrams.

29

the same as models of T(Σ,E) in C, seen as a symmetric strict monoidal cate-
gory. Indeed, there are equivalences:

LinMod(T(Σ,E),C) ' LinMod(CCm ; T(Σ,E),C) ' CartMod(L(Σ,E),C).

The reason for the second equivalence is that any cartesian category carries
exactly one commutative comonoid structure: to see this, note that given
two comonoid structures, the counits must agree since 0 is terminal. From
this, it is easy to show that the comultiplications must agree as well. Thus
a symmetric monoidal functor from CCm ; T(Σ,E) to cartesian C is obliged to
take the comonoid structure of CCm to that induced by the diagonals in C.
The first equivalence, instead, is induced by the naturality of the diagonals in
C: roughly speaking, the additional equations imposed by the distributive law
defining CCm ; T(Σ,E) are imposed implicitly by the cartesian structure of C.

The remainder of the section is devoted to proving Theorem 6.1. A first,
useful observation is that in TΣ, the free PROP on (Σ, ∅), (Lw1)-(Lw2) allow
us to copy and discard not only the generators but arbitrary string diagrams.

Lemma 6.4. Suppose d is an arrow of TΣ. Then the following holds in
TΣ + CCm quotiented by (Lw1)-(Lw2).

d =
d

d
(Lw3) d = (Lw4)

Proof. By induction on d . For (Lw3), the base cases of and fol-
low by the laws of SMCs (Figure 2). The base case of o , for o a generator
in Σ, is given by (Lw2). The inductive cases of ; and ⊕ follow immediately
by the induction hypothesis. The reasoning for (Lw4) is analogous. �

Next, we observe that it suffices to prove Theorem 6.1 for SMPs with no
equations, as TΣ above. With this insight, computations in L(Σ,E) are simpler,
since we can work with terms instead of equivalence classes.

Lemma 6.5. If the statement of Theorem 6.1 holds in the case E = ∅, then
it holds for any cartesian SMP (Σ, E).

30

Proof. Let (Σ, E) be a cartesian SMP and TΣ, T(Σ,E) be PROPs freely gen-
erated, respectively, by (Σ, ∅) and (Σ, E). By assumption, Theorem 6.1 holds
for (Σ, ∅) with distributive law λ : TΣ ; CCm → CCm ; TΣ. We now want to
show that λ is compatible with E, in the sense of Proposition 4.2 (i): it suf-

fices to prove that λ(
idn⊕l⊕idm∈TΣ−−−−−−−−−→ d∈CCm−−−−→) = λ(

idn⊕r⊕idm∈TΣ−−−−−−−−−→ d∈CCm−−−−→) for all
d, n,m and equations l = r in E. Now, as a first step, we can apply Propo-

sition 5.2 to decompose
d∈CCm−−−−→ as

d′∈Cm−−−→ p∈P−−→, where Cm is the free PRO of
comonoids (Example 2.2(c)). We shall interpret d′ as an arrow of CCm: this
is harmless since the terms yielding the arrows of Cm are a subset of those
generating the arrows of CCm. We thus have

dl

2 T⌃ 2 CCm

=
l d0 p

2 P2 T⌃ 2 CCm

.

Note that, because E is operadic, l and r have coarity 1. Using the fact that
d′ does not contain symmetries, we can further decompose it as follows.

l d0 p

2 P2 T⌃ 2 CCm

=
l p

d1

d2

d3

2 P2 T⌃ 2 CCm

.

We now exploit the fact that distributive laws of PROPs preserve the sym-

metric monoidal structure. That means, λ(
idn⊕l⊕idm−−−−−−→ d′ ; p−−→) can be computed

componentwise as follows (observe that
p∈P−−→ qualifies both as an arrow of TΣ

and of CCm, as any PROP contains a copy of P, cf. Example 2.2.(a)).

λ

(
l p

d1

d2

d3

2 P2 T⌃ 2 CCm)
=

d1

d3

2 CCm

;

⊕

λ
(

l d2

2 T⌃ 2 CCm)
⊕

; p

2 P

31

To conclude, we need to ensure that λ(
l−→ d2−→) = λ(

r−→ d2−→). This is obvious
once we realise that, because d2 has arity 1, it can be only of two shapes,
yielding the cases below. The value of λ is computed using (Lw3)-(Lw4).

λ
(

l

2 T⌃ 2 CCm)
=

l

l

l

2 T⌃2 CCm

E
=

r

r

r

2 T⌃2 CCm

= λ
(2 T⌃ 2 CCm

r
)

λ
(

l

2 T⌃ 2 CCm)
=

2 CCm 2 T⌃

= λ
(2 T⌃ 2 CCm

r
)
.

Therefore, we verified the assumption of Proposition 4.2(i), which yields
distributive law λ′ : T(Σ,E) ; CCm→ CCm ; T(Σ,E) as desired. �

Thus, to prove Theorem 6.1, it suffices to focus on LΣ (an abbreviation
for LΣ,∅). We shall obtain the distributive law TΣ ; CCm → CCm ; TΣ using
Proposition 3.6, by showing that any arrow of LΣ decomposes as

∈CCm−−−→ ∈TΣ−−→ .

Note that both TΣ and CCm can be seen as sub-PROPs of LΣ:

Lemma 6.6.

• CCm is the sub-PROP of LΣ whose arrows are lists of variables. The
inclusion Φ: CCm→ LΣ is defined on generators of CCm as follows:

7→ 〈x1, x1〉 : 1→ 2 7→ 〈〉 : 1→ 0.

• TΣ is the sub-PROP of LΣ whose arrows are linear terms. The inclusion
Ψ: TΣ → LΣ is defined on generators of TΣ by:

o 7→ 〈o(x1, . . . , xn)〉 : n→ 1 (o : n→ 1) ∈ Σ.

Proof. CCm ∼= Fop is the initial Lawvere category (free category with prod-
ucts on one object) and can clearly be identified with the “variable-only”
fragment of LΣ. One can easily verify that Ψ: TΣ → LΣ identifies the linear
terms in LΣ following the observations in Remark 2.9. �

32

Henceforth we shall not distinguish between CCm and the isomorphic
sub-PROP of LΣ identified by the image of Φ, and similarly for TΣ and
Ψ. Lemma 6.6 allows us to see LΣ as a playground where CCm and TΣ

interact. The following statement guarantees the soundness of the interaction
described by (Lw1)-(Lw2). Indeed, it is immediate that:

Lemma 6.7. (Lw1) and (Lw2) are sound in LΣ.

We now have all the ingredients to conclude the proof of Theorem 6.1.

Proof (Theorem 6.1). The conclusion of Lemma 6.5 allows us to assume,
without loss of generality, that E = ∅. This means that, in LΣ, any arrow

n
f−→ m can easily be factorised as n

ĉ∈CCm−−−−→ d̂∈TΣ−−−→ m.
Indeed, f is just a list of cartesian Σ-terms 〈t1, . . . , tm〉. Replacing the

variables of 〈t1, . . . , tm〉 with fresh ones x1, . . . , xz, without repetition, gives us

a list of linear terms z
d̂∈TΣ−−−→ m. Component ĉ is the list n

ovar(t1,...,tm)∈CCm−−−−−−−−−−−→ z
of variables originally occurring in f , so that post-composition with d̂ yields
〈t1, . . . , tm〉. Uniqueness up-to permutation of this factorisation is immediate.

Therefore, Proposition 3.6 gives us a distributive law λ : TΣ ; CCm →
CCm ; TΣ and LΣ

∼= CCm ; TΣ. It remains to show that (Lw1)-(Lw2) suffice
to derive all equations implied by λ. Suppose, therefore, that λ(d ; c) = c′ ; d′.
We need to show that:

d ; c = c′ ; d′ modulo the equations of TΣ +CCm and (Lw1)− (Lw2). (†)

Since the factorisation is unique up-to permutation, it suffices to show that

there exists factorisation n
c′′∈CCm−−−−→ d′′∈TΣ−−−→ m of d ; c in LΣ s.t. d ; c and c′′ ; d′′

are equal modulo the equations of TΣ + CCm and (Lw1)− (Lw2). (‡)

Statement (‡) implies (†) because, by uniqueness up-to permutation, there

exists
p∈P−−→ such that d′ = p ; d′′ and c′′ = c′ ; p in LΣ. Since p is an arrow

of both sub-PROPs TΣ and CCm, the first equality also holds in TΣ and the
second in CCm. So c′ ; d′ = c′ ; p ; d′′ = c′′ ; d′′ in TΣ + CCm.

To prove (‡), we give a procedure to transform
d∈TΣ−−−→ c∈CCm−−−−→ into the form

c′′∈CCm−−−−→ d′′∈TΣ−−−→ by only using the equations in TΣ + CCm plus (Lw1)-(Lw2).
Lemmas 6.6 and 6.7 guarantee that d ; c = c′′ ; d′′ as arrows of LΣ.

33

1. Recall that Theorem 5.1 yields that TΣ
∼= P ; SΣ, where SΣ is the free

PRO on Σ. Thus
d∈TΣ−−−→ can be decomposed as

p∈P−−→ ;
d̄∈SΣ−−−→.

d c = cp d̄

Similarly, by Proposition 5.2, c =
c̄∈Cm−−−→ p′∈P−−→, where Cm is the free PRO

of comonoids.

cp d̄ = p p0d̄ c̄

By doing the above, we moved the permutations out of the way.

2. We now make d̄ and c̄ interact. First note that, since d̄ comes from SΣ,
it does not contain and all generators o ∈ Σ have coarity 1. Thus
d̄ must the ⊕-product d̄1⊕ . . .⊕ d̄z of string diagrams d̄i : ki → 1 of TΣ.

p p0d̄ c̄ =

d̄z

d̄2

d̄1

p p0c̄

For analogous reasons, c̄ is also a ⊕-product c̄1 ⊕ . . . ⊕ c̄z where, for
1 ≤ i ≤ z,

c̄i = or c̄i = . (12)

We thus can present c̄ as follows:

d̄z

d̄2

d̄1

p p0c̄ =

d̄z

d̄2

d̄1 c̄1

c̄2

c̄z

p p0 .

We are now in position to distribute each d̄i over the corresponding
c̄i. Suppose first c̄i satisfies the left-hand equality in (12). By assump-
tion, all the equations of TΣ + CCm, (Lw1) and (Lw2) hold. Thus, by

34

Lemma 6.4, also (Lw3) holds. Starting from d̄i ; c̄i, we can iteratively

apply (Lw3) to obtain an arrow of the form
∈CCm−−−→ ∈TΣ−−→.

d̄i (Lw3)
=

d̄i

d̄i

d̄i

2 Cm 2 T⌃2 CCm

In the remaining case, c̄i satisfies the right-hand equality in (12). Then,

one application of (Lw4) also gives us a string diagram of shape
∈CCm−−−→ ∈TΣ−−→.

d̄i
(Lw4)

=

2 Cm 2 T⌃2 CCm

Applying the above transformations for each d̄i ; c̄i yields a string dia-

gram of the desired shape
c′′∈CCm−−−−→ d′′∈TΣ−−−→.

d̄z

d̄2

d̄1 c̄1

c̄2

c̄z

p p0 (Lw3),(Lw4)
= p p0

c00 2 Cm d00 2 T⌃2 CCm

.

Observe that the transformations above use only equations in TΣ + CCm,
(Lw1) and (Lw2). This concludes the proof of (‡), and thus of the theorem.

�

Acknowledgements. The first author acknowledge support by project ANR
12IS02001 PACE. The third author acknowledges support from the Euro-
pean Research Council under the European Union’s Seventh Framework Pro-
gramme (FP7/2007-2013) / ERC grant agreement no 320571.

References

[1] Baez, J., Erbele, J.: Categories in control. Theory and Application of
Categories 30, 836–881 (2015)

[2] Baez, J.C., Stay, M.: Physics, topology, logic and computation: A
rosetta stone. Lecture Notes in Physics 813, 95–174 (2011)

35

[3] Baez, J.C.: Universal algebra and diagrammatic reasoning. Lecture
(2006), http://math.ucr.edu/home/baez/universal/universal_

hyper.pdf

[4] Bénabou, J.: Introduction to bicategories. In: Reports of the Midwest
Category Seminar, Lecture Notes in Mathematics, vol. 47, pp. 1–77.
Springer Berlin Heidelberg (1967)

[5] Blackwell, R., Kelly, G., Power, A.: Two-dimensional monad theory.
Journal of Pure and Applied Algebra 59(1), 1 – 41 (1989), http://www.
sciencedirect.com/science/article/pii/0022404989901606

[6] Bonchi, F., Milius, S., Silva, A., Zanasi, F.: Killing epsilons with a
dagger — a coalgebraic study of systems with algebraic label structure.
Theoretical Computer Science 604, 102–126 (2015)

[7] Bonchi, F., Sobocinski, P., Zanasi, F.: A categorical semantics of signal
flow graphs. In: CONCUR 2014 - Concurrency Theory - 25th Interna-
tional Conference, CONCUR 2014. Proceedings. pp. 435–450 (2014)

[8] Bonchi, F., Sobocinski, P., Zanasi, F.: Interacting bialgebras are Frobe-
nius. In: Foundations of Software Science and Computation Structures -
17th International Conference, FOSSACS 2014, Held as Part of the Eu-
ropean Joint Conferences on Theory and Practice of Software, ETAPS
2014. pp. 351–365 (2014)

[9] Bonchi, F., Sobocinski, P., Zanasi, F.: Full abstraction for signal flow
graphs. In: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2015. pp.
515–526 (2015)

[10] Bonchi, F., Sobocinski, P., Zanasi, F.: Lawvere categories as composed
props. In: Coalgebraic Methods in Computer Science - 13th IFIP WG
1.3 International Workshop, CMCS 2016, Colocated with ETAPS 2016,
Eindhoven, The Netherlands, April 2-3, 2016, Revised Selected Pa-
pers. Lecture Notes in Computer Science, vol. 9608, pp. 11–32. Springer
(2016), http://dx.doi.org/10.1007/978-3-319-40370-0_3

[11] Bonchi, F., Sobocinski, P., Zanasi, F.: The calculus of signal flow dia-
grams I: linear relations on streams. Inf. Comput. 252, 2–29 (2017)

36

http://math.ucr.edu/home/baez/universal/universal_hyper.pdf
http://math.ucr.edu/home/baez/universal/universal_hyper.pdf
http://www.sciencedirect.com/science/article/pii/0022404989901606
http://www.sciencedirect.com/science/article/pii/0022404989901606
http://dx.doi.org/10.1007/978-3-319-40370-0_3

[12] Bonchi, F., Sobociński, P., Zanasi, F.: Interacting Hopf algebras. Jour-
nal of Pure and Applied Algebra 221(1), 144–184 (January 2017)

[13] Bonchi, F., Zanasi, F.: Bialgebraic semantics for logic programming.
Logical Methods in Computer Science 11(1:14) (2015)

[14] Bonsangue, M.M., Hansen, H.H., Kurz, A., Rot, J.: Presenting dis-
tributive laws. In: Algebra and Coalgebra in Computer Science - 5th
International Conference, CALCO 2013. Proceedings. pp. 95–109 (2013)

[15] Borceux, F.: Handbook of Categorical Algebra 1 – Basic Category The-
ory. Cambridge Univ. Press (1994)

[16] Bruni, R., Melgratti, H.C., Montanari, U.: A connector algebra for P/T
nets interactions. In: CONCUR ‘11. pp. 312–326. Springer (2011)

[17] Bruni, R., Montanari, U., Plotkin, G.D., Terreni, D.: On hierarchical
graphs: Reconciling bigraphs, gs-monoidal theories and gs-graphs. Fun-
dam. Inform. 134(3-4), 287–317 (2014)

[18] Burroni, A.: Higher dimensional word problems with applications to
equational logic. Theor Comput Sci 115, 43–62 (1993)

[19] Cheng, E.: Distributive laws for lawvere theories. Algebra Universalis
(to appear), available at http://arxiv.org/abs/1112.3076

[20] Coecke, B., Duncan, R.: Interacting quantum observables: categorical
algebra and diagrammatics. New Journal of Physics 13(4), 043016 (2011)

[21] Corradini, A., Gadducci, F.: An algebraic presentation of term graphs,
via gs-monoidal categories. Applied Categorical Structures 7(4), 299–331
(1999)

[22] Dascalescu, S., Nastasescu, C., Raianu, S.: Hopf Algebras, Pure and
Applied Mathematics, vol. 235. Marcel Dekker, Inc., New York, Basel
(2001), an Introduction

[23] Eilenberg, S., Kelly, G.M.: Closed categories. In: Proceedings of the
Conference on Categorical Algebra. pp. 421–562. Springer (1966)

[24] Fiore, M.P., Campos, M.D.: The algebra of directed acyclic graphs. In:
Abramsky Festschrift. LNCS, vol. 7860 (2013)

37

http://arxiv.org/abs/1112.3076

[25] Fong, B., Rapisarda, P., Sobociński, P.: A categorical approach to open
& interconnected dynamical systems pp. 495–504 (2016)

[26] Fritz, T.: A presentation of the category of stochastic matrices. CoRR
abs/0902.2554 (2009), http://arxiv.org/abs/0902.2554

[27] Hyland, M., Plotkin, G., Power, J.: Combining effects: sum and tensor.
Theor Comput Sci 357(1-3), 70–99 (2006)

[28] Hyland, M., Power, J.: Symmetric monoidal sketches. In: PPDP. pp.
280–288 (2000)

[29] Hyland, M., Power, J.: The category theoretic understanding of univer-
sal algebra: Lawvere theories and monads. Electronic Notes in Theoret-
ical Computer Science 172, 437–458 (2007)

[30] Jacobs, B.: Semantics of weakening and contraction. Annals of Pure and
Applied Logic 69(1), 73 – 106 (1994)

[31] Lack, S.: Composing PROPs. Theor App Categories 13(9), 147–163
(2004)

[32] Lafont, Y.: Equational reasoning with 2-dimensional diagrams. In:
Comon, H., Jounnaud, J.P. (eds.) Term Rewriting, Lecture Notes in
Computer Science, vol. 909, pp. 170–195. Springer Berlin Heidelberg
(1995)

[33] Lawvere, W.F.: Functorial Semantics of Algebraic Theories. Ph.D. the-
sis (2004)

[34] Mac Lane, S.: Categorical algebra. B Am Math Soc 71, 40–106 (1965)

[35] Mac Lane, S.: Categories for the Working Mathematician. Springer
(1998)

[36] Melliès, P.A.: Categorical semantics of linear logic. In: Interactive Mod-
els of Computation and Program Behaviour, Panoramas et Synthèses 27,
Société Mathématique de France 1196 (2009)

[37] Rosebrugh, R., Wood, R.: Distributive laws and factorization. Journal
of Pure and Applied Algebra 175(13), 327 – 353 (2002), special Volume
celebrating the 70th birthday of Professor Max Kelly

38

http://arxiv.org/abs/0902.2554

[38] Ross Duncan, K.D.: Interacting Frobenius algebras are Hopf. CoRR
abs/1601.04964 (2016), http://arxiv.org/abs/1601.04964

[39] Selinger, P.: A survey of graphical languages for monoidal categories.
Springer Lecture Notes in Physics 13(813), 289–355 (2011)

[40] Sleep, M.R., Plasmeijer, M.J., van Eekelen, M.C.J.D. (eds.): Term
Graph Rewriting: Theory and Practice. John Wiley and Sons Ltd.,
Chichester, UK (1993)

[41] Sobociński, P., Stephens, O.: A programming language for spatial dis-
tribution of net systems. In: Petri Nets ‘14 (2014)

[42] Street, R.: The formal theory of monads. J Pure Appl Algebra 2(1),
243–265 (2002)

[43] Zanasi, F.: Interacting Hopf Algebras: the theory of linear systems.
Ph.D. thesis, Ecole Normale Supérieure de Lyon (2015)

39

http://arxiv.org/abs/1601.04964

	Introduction
	Monoidal, Symmetric Monoidal and Cartesian Theories
	Monoidal presentations and PROs
	Symmetric Monoidal presentations and PROPs
	Cartesian presentations and Lawvere Categories

	Distributive Laws
	Operations on Distributive Laws
	Quotient of a Distributive Law
	Dual of a Distributive Law

	PROPs as Composed PROs
	Lawvere Categories as Composed PROPs

