22 research outputs found

    Right-handed Dirac Neutrinos in νe−\nu e^{-} Scattering and Azimuthal Asymmetry in Recoil Electron Event Rates

    Full text link
    In this paper a scenario with the participation of the exotic scalar S, tensor T and pseudoscalar couplings of the right-handed neutrinos in addition to the standard vector V, axial A couplings of the left-handed neutrinos in the low-energy (νμe−)(\nu_{\mu}e^{-}) and (νee−)(\nu_{e}e^{-}) scattering processes is considered. Neutrinos are assumed to be massive Dirac fermions and to be polarized. Both reactions are studied at the level of the four-fermion point interaction. The main goal is to show that the physical consequence of the presence of the right-handed neutrinos is an appearance of the azimuthal asymmetry in the angular distribution of the recoil electrons caused by the non-vanishing interference terms between the standard and exotic couplings, proportional to the transverse neutrino polarization vector. The upper limits on the expected effect of this asymmetry for the low-energy neutrinos (Eν<1MeV)(E_{\nu} < 1 MeV) are found. We also show that if the neutrino helicity rotation (νeL→νeR)(\nu_{eL} \to \nu_{eR}) in the solar magnetic field takes place, the similar effect of the azimuthal asymmetry of the recoil electrons scattered by the solar neutrinos should be observed. This effect would also come from the interference terms between the standard (V,A)L(V, A)_{L} and exotic (S,T,P)R(S, T, P)_{R} couplings. New-type neutrino detectors with good angular resolution could search for the azimuthal asymmetry in event number.Comment: EPJ C style, 14 pages, 5 eps figures; to appear in Eur. Phys. J

    Impact of right-handed interactions on the propagation of Dirac and Majorana neutrinos in matter

    Full text link
    Dirac and Majorana neutrinos can be distinguished in relativistic neutrino oscillations if new right-handed interactions exist, due to their different propagation in matter. We review how these new interactions affect neutrino oscillation experiments and discuss the size of this eventually observable effect for different oscillation channels, baselines and neutrino energies.Comment: 26 pages, 5 figure

    New NEMESIS Results

    Get PDF
    Funding Information: This work has been supported in part by the EU INTERREG for the Baltic Sea programme within the BSUIN project, and by the Polish Ministry of Science and Higher Education (Grant no. Funding Information: This work has been supported in part by the EU INTERREG for the Baltic Sea programme within the BSUIN project, and by the Polish Ministry of Science and Higher Education (Grant no. 3988/INTERREG BSR/2018/2). Publisher Copyright: Š Copyright owned by the author(s) under the terms of the Creative Commons.Preliminary results from a 349-day run (live time) with a 565 kg Pb target and a 166-day background measurement are presented. Three minor anomalies were detected in muon-suppressed neutron multiplicity spectra. The multiplicities of these small excesses match the outcome of an earlier, similar but independent measurement. The nature of the anomalies remains unclear, but, in principle, they may be a signature of self-annihilation of a Weakly Interacting Massive Particle (WIMP) with a mass around 10 GeV/c2. If our interpretation is correct, the expected cross section would be of the order of 10-42 cm2 for Spin Dependent and 10-46 cm2 for Spin Independent interactions. Analysis of the event rate, based on the statistical uncertainty, indicates that cross-section limits for Dark Matter (DM) mass range of approximately 3-40 GeV/c2 can be investigated with an upgraded NEMESIS setup.Peer reviewe

    Virtual genome walking across the 32 Gb Ambystoma mexicanum genome; assembling gene models and intronic sequence

    Get PDF
    Large repeat rich genomes present challenges for assembly using short read technologies. The 32 Gb axolotl genome is estimated to contain ~19 Gb of repetitive DNA making an assembly from short reads alone effectively impossible. Indeed, this model species has been sequenced to 20× coverage but the reads could not be conventionally assembled. Using an alternative strategy, we have assembled subsets of these reads into scaffolds describing over 19,000 gene models. We call this method Virtual Genome Walking as it locally assembles whole genome reads based on a reference transcriptome, identifying exons and iteratively extending them into surrounding genomic sequence. These assemblies are then linked and refined to generate gene models including upstream and downstream genomic, and intronic, sequence. Our assemblies are validated by comparison with previously published axolotl bacterial artificial chromosome (BAC) sequences. Our analyses of axolotl intron length, intron-exon structure, repeat content and synteny provide novel insights into the genic structure of this model species. This resource will enable new experimental approaches in axolotl, such as ChIP-Seq and CRISPR and aid in future whole genome sequencing efforts. The assembled sequences and annotations presented here are freely available for download from https://tinyurl.com/y8gydc6n. The software pipeline is available from https://github.com/LooseLab/iterassemble

    A germline GFP transgenic axolotl and its use to track cell fate: dual origin of the fin mesenchyme during development and the fate of blood cells during regeneration

    No full text
    The development of transgenesis in axolotls is crucial for studying development and regeneration as it would allow for long-term cell fate tracing as well as gene expression analysis. We demonstrate here that plasmid injection into the one-cell stage axolotl embryo generates mosaic transgenic animals that display germline transmission of the transgene. The inclusion of SceI meganuclease in the injections (Thermes, V., Grabher, C., Ristoratore, F., Bourrat, F., Choulika, A., Wittbrodt, J., Joly, J.S., 2002. I-SceI meganuclease mediates highly efficient transgenesis in fish. Mech. Dev. 118, 91-98) resulted in a higher percentage of F0 animals displaying strong expression throughout the body. This represents the first demonstration in the axolotl of germline transmission of a transgene. Using this technique we have generated a germline transgenic animal expressing GFP ubiquitously in all tissues examined. We have used this animal to study cell fate in the dorsal fin during development. We have uncovered a contribution of somite cells to dorsal fin mesenchyme in the axolotl, which was previously assumed to derive solely from neural crest. We have also studied the role of blood during tail regeneration by transplanting the ventral blood-forming region from GFP+ embryos into unlabeled hosts. During tail regeneration, we do not observe GFP+ cells contributing to muscle or nerve, suggesting that during tail regeneration blood stem cells do not undergo significant plasticity

    New NEMESIS results

    No full text
    Abstract Preliminary results from a 349-day run (live time) with a 565 kg Pb target and a 166-day background measurement are presented. Three minor anomalies were detected in muon-suppressed neutron multiplicity spectra. The multiplicities of these excesses match the outcome of an earlier, similar but independent measurement. The nature of the anomalies remains unclear, but, in principle, they may be a signature of self-annihilation of a Weakly Interacting Massive Particle (WIMP) with a mass around 10 GeV/c². The expected cross section would be around 10⁻⁴² cm² for Spin Dependent and 10⁻⁴⁶ cm² for Spin Independent interactions. Analysis of the event rate, based on the statistical uncertainty, indicates that cross-section limits for Dark Matter (DM) mass range of approximately 3–40 GeV/c² can be investigated with an upgraded NEMESIS setup

    High-multiplicity neutron events registered by NEMESIS experiment

    No full text
    Abstract Neutron-induced interactions contribute to the signal-mimicking background in deep-underground searches for exotic phenomena such as Dark Matter, neutrino-less double beta decay, proton decay, etc. Apart from radioactive decay, the primary source of neutrons underground are high-energy muons from cosmic showers. While the maximum number of fission neutrons is around six and energies around oneMeV, muon-induced interactions may generate hundreds of neutrons, also with high energies. Furthermore, these processes are not yet reproduced in numerical simulations with sufficient reliability. The main goal of the NEMESIS experiment is to improve our knowledge and understanding of cosmic muon-induced neutron production in high-Z targets. NEMESIS (New Emma MEasurementS Including neutronS) is taking data at a depth of 210 m.w.e. in Callio Lab in the Pyhäsalmi mine, Finland
    corecore