176 research outputs found

    Computational Polyethylene-Ceramic Composite Plate Design and Optimization

    Get PDF
    A composite designed Ultra High Molecular Weight Polyethylene (UHMWPE) reinforced by a material with a failure mode that will strengthen the system may significantly improve on modern armor designs. UHMWPE is considerably less dense than steel or high density ceramics. It is reasonable to consider making improvements to the weight-performance of armor by using the lower density UHMWPE and combining it with inserts of a high-density ceramic. A cellular ceramic encapsulated by rubber may significantly increase the amount of kinetic energy a composite will absorb through a phase transition. It is theorized that a series of ceramic inserts distributed in a polymer matrix will result in an increased impact resistance. Shock propagation in the ceramic will be minimal, and the elastomeric properties of the polymer will provide maximum tensile support. The ceramic inserts will act as a stress concentrator and physical resistor to the impacting object. When the ceramic inserts are shattered by the impactor they will impart a resistive force by forcing additional deformation in the polymer matrix. Study of design variations by examination of multiple geometries for the ceramic inserts will maximize the impact resistance of the structure. The resistance of the structure is enhanced by providing a multi-dimensional failure mode. The ceramic, once shattered, will still occupy space, forcing additional plastic deformation, and additional deformation in the impactor

    Improved Biodistribution and Extended Serum Half-Life of a Bacteriophage Endolysin by Albumin Binding Domain Fusion

    Get PDF
    The increasing number of multidrug-resistant bacteria intensifies the need to develop new antimicrobial agents. Endolysins are bacteriophage-derived enzymes that degrade the bacterial cell wall and hold promise as a new class of highly specific and versatile antimicrobials. One major limitation to the therapeutic use of endolysins is their often short serum circulation half-life, mostly due to kidney excretion and lysosomal degradation. One strategy to increase the half-life of protein drugs is fusion to the albumin-binding domain (ABD). By high-affinity binding to serum albumin, ABD creates a complex with large hydrodynamic volume, reducing kidney excretion and lysosomal degradation. The aim of this study was to investigate the in vitro antibacterial activity and in vivo biodistribution and half-life of an engineered variant of the Staphylococcus aureus phage endolysin LysK. The ABD sequence was introduced at different positions within the enzyme, and lytic activity of each variant was determined in vitro and ex vivo in human serum. Half-life and biodistribution were assessed in vivo by intravenous injection of europium-labeled proteins into C57BL/6 wild-type mice. Our data demonstrates that fusion of the endolysin to ABD improves its serum circulation half-life and reduces its deposition in the kidneys in vivo. The most active construct reduced S. aureus counts in human serum ex vivo by 3 logs within 60 min. We conclude that ABD fusions provide an effective strategy to extend the half-life of antibacterial enzymes, supporting their therapeutic potential for treatment of systemic bacterial infections

    Systemic application of bone-targeting peptidoglycan hydrolases as a novel treatment approach for staphylococcal bone infection

    Full text link
    The rising prevalence of antimicrobial resistance in S. aureus has rendered treatment of staphylococcal infections increasingly difficult, making the discovery of alternative treatment options a high priority. Peptidoglycan hydrolases, a diverse group of bacteriolytic enzymes, show high promise as such alternatives due to their rapid and specific lysis of bacterial cells, independent of antibiotic resistance profiles. However, using these enzymes for the systemic treatment of local infections, such as osteomyelitis foci, needs improvement, as the therapeutic distributes throughout the whole host, resulting in low concentrations at the actual infection site. In addition, the occurrence of intracellularly persisting bacteria can lead to relapsing infections. Here, we describe an approach using tissue-targeting to increase the local concentration of therapeutic enzymes in the infected bone. The enzymes were modified with a short targeting moiety that mediated accumulation of the therapeutic in osteoblasts and additionally enables targeting of intracellularly surviving bacteria

    Smart Tungsten-based Alloys for a First Wall of DEMO

    Get PDF
    During an accident with loss-of-coolant and air ingress in DEMO, the temperature of tungsten first wall cladding may exceed 1000 °C and remain for months leading to tungsten oxidation. The radioactive tungsten oxide can be mobilized to the environment at rates of 10–150 kg per hour. Smart tungsten-based alloys are under development to address this issue. Alloys are aimed to function as pure tungsten during regular plasma operation of DEMO. During an accident, alloying elements will create a protective layer, suppressing release of W oxide. Bulk smart alloys were developed by using mechanical alloying and field-assisted sintering technology. The mechanical alloying process was optimized leading to an increased powder production by at least 40 %. Smart alloys and tungsten were tested under a variety of DEMO-relevant plasma conditions. Both materials demonstrated similar sputtering resistance to deuterium plasma. Under accident conditions, alloys feature a 40-fold reduction of W release compared to that of pure tungsten.</p

    The MAGNOLIA Trial: Zanubrutinib, a Next-Generation Bruton Tyrosine Kinase Inhibitor, Demonstrates Safety and Efficacy in Relapsed/Refractory Marginal Zone Lymphoma

    Get PDF
    Purpose: Marginal zone lymphoma (MZL) is an uncommon non-Hodgkin lymphoma with malignant cells that exhibit a consistent dependency on B-cell receptor signaling. We evaluated the efficacy and safety of zanubrutinib, a next-generation selective Bruton tyrosine kinase inhibitor, in patients with relapsed/ refractory (R/R) MZL. Patients and Methods: Patients with R/R MZL were enrolled in the phase II MAGNOLIA (BGB-3111-214) study. The primary endpoint was overall response rate (ORR) as determined by an independent review committee (IRC) based on the Lugano 2014 classification. Results: Sixty-eight patients were enrolled. After a median follow-up of 15.7 months (range, 1.6 to 21.9 months), the IRCassessed ORR was 68.2% and complete response (CR) was 25.8%. The ORR by investigator assessment was 74.2%, and the CR rate was 25.8%. The median duration of response (DOR) and median progression-free survival (PFS) by independent review was not reached. The IRC-assessed DOR rate at 12 months was 93.0%, and IRC-assessed PFS rate was 82.5% at both 12 and 15 months. Treatment was well tolerated with the majority of adverse events (AE) being grade 1 or 2. The most common AEs were diarrhea (22.1%), contusion (20.6%), and constipation (14.7%). Atrial fibrillation/flutter was reported in 2 patients; 1 patient had grade 3 hypertension. No patient experienced major hemorrhage. In total, 4 patients discontinued treatment due to AEs, none of which were considered treatment-related by the investigators. Conclusions: Zanubrutinib demonstrated highORRand CR rate with durable disease control and a favorable safety profile in patients with R/R MZL. _2021 The Authors; Published by the American Association for Cancer Research

    Health System Resource Gaps and Associated Mortality from Pandemic Influenza across Six Asian Territories

    Get PDF
    BACKGROUND: Southeast Asia has been the focus of considerable investment in pandemic influenza preparedness. Given the wide variation in socio-economic conditions, health system capacity across the region is likely to impact to varying degrees on pandemic mitigation operations. We aimed to estimate and compare the resource gaps, and potential mortalities associated with those gaps, for responding to pandemic influenza within and between six territories in Asia. METHODS AND FINDINGS: We collected health system resource data from Cambodia, Indonesia (Jakarta and Bali), Lao PDR, Taiwan, Thailand and Vietnam. We applied a mathematical transmission model to simulate a "mild-to-moderate" pandemic influenza scenario to estimate resource needs, gaps, and attributable mortalities at province level within each territory. The results show that wide variations exist in resource capacities between and within the six territories, with substantial mortalities predicted as a result of resource gaps (referred to here as "avoidable" mortalities), particularly in poorer areas. Severe nationwide shortages of mechanical ventilators were estimated to be a major cause of avoidable mortalities in all territories except Taiwan. Other resources (oseltamivir, hospital beds and human resources) are inequitably distributed within countries. Estimates of resource gaps and avoidable mortalities were highly sensitive to model parameters defining the transmissibility and clinical severity of the pandemic scenario. However, geographic patterns observed within and across territories remained similar for the range of parameter values explored. CONCLUSIONS: The findings have important implications for where (both geographically and in terms of which resource types) investment is most needed, and the potential impact of resource mobilization for mitigating the disease burden of an influenza pandemic. Effective mobilization of resources across administrative boundaries could go some way towards minimizing avoidable deaths

    Triple-negative breast cancers are increased in black women regardless of age or body mass index

    Get PDF
    INTRODUCTION. We investigated clinical and pathologic features of breast cancers (BC) in an unselected series of patients diagnosed in a tertiary care hospital serving a diverse population. We focused on triple-negative (Tneg) tumours (oestrogen receptor (ER), progesterone receptor (PR) and HER2 negative), which are associated with poor prognosis. METHODS. We identified female patients with invasive BC diagnosed between 1998 and 2006, with data available on tumor grade, stage, ER, PR and HER2 status, and patient age, body mass index (BMI) and self-identified racial/ethnic group. We determined associations between patient and tumour characteristics using contingency tables and multivariate logistic regression. RESULTS. 415 cases were identified. Patients were racially and ethnically diverse (born in 44 countries, 36% white, 43% black, 10% Hispanic and 11% other). 47% were obese (BMI > 30 kg/m2). 72% of tumours were ER+ and/or PR+, 20% were Tneg and 13% were HER2+. The odds of having a Tneg tumour were 3-fold higher (95% CI 1.6, 5.5; p = 0.0001) in black compared with white women. Tneg tumours were equally common in black women diagnosed before and after age 50 (31% vs 29%; p = NS), and who were obese and non-obese (29% vs 31%; p = NS). Considering all patients, as BMI increased, the proportion of Tneg tumours decreased (p = 0.08). CONCLUSIONS. Black women of diverse background have 3-fold more Tneg tumours than non-black women, regardless of age and BMI. Other factors must determine tumour subtype. The higher prevalence of Tneg tumours in black women in all age and weight categories likely contributes to black women's unfavorable breast cancer prognosis.LaPann Fund; Research Enhancement Fun
    • …
    corecore