1,394 research outputs found

    The Gerasimov-Drell-Hearn Sum Rule and the Spin Structure of the Nucleon

    Full text link
    The Gerasimov-Drell-Hearn sum rule is one of several dispersive sum rules that connect the Compton scattering amplitudes to the inclusive photoproduction cross sections of the target under investigation. Being based on such universal principles as causality, unitarity, and gauge invariance, these sum rules provide a unique testing ground to study the internal degrees of freedom that hold the system together. The present article reviews these sum rules for the spin-dependent cross sections of the nucleon by presenting an overview of recent experiments and theoretical approaches. The generalization from real to virtual photons provides a microscope of variable resolution: At small virtuality of the photon, the data sample information about the long range phenomena, which are described by effective degrees of freedom (Goldstone bosons and collective resonances), whereas the primary degrees of freedom (quarks and gluons) become visible at the larger virtualities. Through a rich body of new data and several theoretical developments, a unified picture of virtual Compton scattering emerges, which ranges from coherent to incoherent processes, and from the generalized spin polarizabilities on the low-energy side to higher twist effects in deep inelastic lepton scattering.Comment: 32 pages, 19 figures, review articl

    Plasticity facilitates sustainable growth in the commons

    Get PDF
    In the commons, communities whose growth depends on public goods, individuals often rely on surprisingly simple strategies, or heuristics, to decide whether to contribute to the common good (at risk of exploitation by free-riders). Although this appears a limitation, here we show how four heuristics lead to sustainable growth by exploiting specific environmental constraints. The two simplest ones --contribute permanently or switch stochastically between contributing or not-- are first shown to bring sustainability when the public good efficiently promotes growth. If efficiency declines and the commons is structured in small groups, the most effective strategy resides in contributing only when a majority of individuals are also contributors. In contrast, when group size becomes large, the most effective behavior follows a minimal-effort rule: contribute only when it is strictly necessary. Both plastic strategies are observed in natural systems what presents them as fundamental social motifs to successfully manage sustainability

    Energy Calibration of the JLab Bremsstrahlung Tagging System

    Get PDF
    In this report, we present the energy calibration of the Hall B bremsstrahlung tagging system at the Thomas Jefferson National Accelerator Facility. The calibration was performed using a magnetic pair spectrometer. The tagged photon energy spectrum was measured in coincidence with e+e−e^+e^- pairs as a function of the pair spectrometer magnetic field. Taking advantage of the internal linearity of the pair spectrometer, the energy of the tagging system was calibrated at the level of ±0.1\pm 0.1% E_\gamma. The absolute energy scale was determined using the e+e−e^+e^- rate measurements close to the end-point of the photon spectrum. The energy variations across the full tagging range were found to be <3<3 MeV.Comment: 15 pages, 12 figure

    Problems with Using Evolutionary Theory in Philosophy

    Get PDF
    Does science move toward truths? Are present scientific theories (approximately) true? Should we invoke truths to explain the success of science? Do our cognitive faculties track truths? Some philosophers say yes, while others say no, to these questions. Interestingly, both groups use the same scientific theory, viz., evolutionary theory, to defend their positions. I argue that it begs the question for the former group to do so because their positive answers imply that evolutionary theory is warranted, whereas it is self-defeating for the latter group to do so because their negative answers imply that evolutionary theory is unwarranted

    Motor control by precisely timed spike patterns

    Full text link
    A fundamental problem in neuroscience is to understand how sequences of action potentials ("spikes") encode information about sensory signals and motor outputs. Although traditional theories of neural coding assume that information is conveyed by the total number of spikes fired (spike rate), recent studies of sensory and motor activity have shown that far more information is carried by the millisecond-scale timing patterns of action potentials (spike timing). However, it is unknown whether or how subtle differences in spike timing drive differences in perception or behavior, leaving it unclear whether the information carried by spike timing actually plays a causal role in brain function. Here we demonstrate how a precise spike timing code is read out downstream by the muscles to control behavior. We provide both correlative and causal evidence to show that the nervous system uses millisecond-scale variations in the timing of spikes within multi-spike patterns to regulate a relatively simple behavior - respiration in the Bengalese finch, a songbird. These findings suggest that a fundamental assumption of current theories of motor coding requires revision, and that significant improvements in applications, such as neural prosthetic devices, can be achieved by using precise spike timing information.Comment: 48 pages, 16 figure

    Emotions and actions associated with altruistic helping and punishment

    Get PDF
    Evolutionary altruism (defined in terms of fitness effects) exists in the context of punishment in addition to helping. We examine the proximate psychological mechanisms that motivate altruistic helping and punishment, including the effects of genetic relatedness, potential for future interactions, and individual differences in propensity to help and punish. A cheater who is a genetic relative provokes a stronger emotional reaction than a cheater who is a stranger, but the behavioral response is modulated to avoid making the transgression public in the case of cheating relatives. Numerous behavioral differences are not accompanied by emotional differences, suggesting that other psychological mechanisms dictate the specific response to emotion-provoking events. Paradoxically, there is a positive correlation between temptation to cheat and propensity to punish others for cheating, leading to a concept of ?selfish punishment? that has been substantiated by a computer simulation model. This study demonstrates that fictional scenarios can provide an important methodological tool for studying the psychological basis of helping and punishment

    Reichenbach's Common Cause Principle in Algebraic Quantum Field Theory with Locally Finite Degrees of Freedom

    Full text link
    In the paper it will be shown that Reichenbach's Weak Common Cause Principle is not valid in algebraic quantum field theory with locally finite degrees of freedom in general. Namely, for any pair of projections A and B supported in spacelike separated double cones O(a) and O(b), respectively, a correlating state can be given for which there is no nontrivial common cause (system) located in the union of the backward light cones of O(a) and O(b) and commuting with the both A and B. Since noncommuting common cause solutions are presented in these states the abandonment of commutativity can modulate this result: noncommutative Common Cause Principles might survive in these models

    Behavioral/Cognitive Multifunctional and Context-Dependent Control of Vocal Acoustics by Individual Muscles

    Get PDF
    The relationship between muscle activity and behavioral output determines how the brain controls and modifies complex skills. In vocal control, ensembles of muscles are used to precisely tune single acoustic parameters such as fundamental frequency and sound amplitude. If individual vocal muscles were dedicated to the control of single parameters, then the brain could control each parameter independently by modulating the appropriate muscle or muscles. Alternatively, if each muscle influenced multiple parameters, a more complex control strategy would be required to selectively modulate a single parameter. Additionally, it is unknown whether the function of single muscles is fixed or varies across different vocal gestures. A fixed relationship would allow the brain to use the same changes in muscle activation to, for example, increase the fundamental frequency of different vocal gestures, whereas a context-dependent scheme would require the brain to calculate different motor modifications in each case. We tested the hypothesis that single muscles control multiple acoustic parameters and that the function of single muscles varies across gestures using three complementary approaches. First, we recorded electromyographic data from vocal muscles in singing Bengalese finches. Second, we electrically perturbed the activity of single muscles during song. Third, we developed an ex vivo technique to analyze the biomechanical and acoustic consequences of single-muscle perturbations. We found that single muscles drive changes in multiple parameters and that the function of single muscles differs across vocal gestures, suggesting that the brain uses a complex, gesture-dependent control scheme to regulate vocal output

    Effects of T=0 two body matrix elements on M1 and Gamow-Teller transitions: isospin decomposition

    Full text link
    We perform calculations for M1 transitions and allowed Gamow Teller (GT) transitions in the even-even Titanium isotopes - 44^{44}Ti, 46^{46}Ti, and 48^{48}Ti. We first do calculations with the FPD6 interaction. Then to study the effect of T=0 matrix elements on the M1 and GT rates we introduce a second interaction in which all the T=0 matrix elements are set equal to zero and a third in which all the T=0 matrix elements are set to a constant. For the latter two interactions the T=1 matrix elements are the same as for FPD6. We are thus able to study the effects of the fluctuating T=0 matrix elements on M1 and GT rates

    Photofission of heavy nuclei at energies up to 4 GeV

    Full text link
    Total photofission cross sections for 238U, 235U, 233U, 237Np, 232Th, and natPb have been measured simultaneously, using tagged photons in the energy range Egamma=0.17-3.84 GeV. This was the first experiment performed using the Photon Tagging Facility in Hall B at Jefferson Lab. Our results show that the photofission cross section for 238U relative to that for 237Np is about 80%, implying the presence of important processes that compete with fission. We also observe that the relative photofission cross sections do not depend strongly on the incident photon energy over this entire energy range. If we assume that for 237Np the photofission probability is equal to unity, we observe a significant shadowing effect starting below 1.5 GeV.Comment: 4 pages of RevTex, 6 postscript figures, Submitted to Phys. Rev. Let
    • 

    corecore