39 research outputs found

    Leveraging Geospatial Information to address Space Epidemiology through Multi\unicode{x2013}omics \unicode{x2013} Report of an Interdisciplinary Workshop

    Full text link
    This article will summarize the workshop proceedings of a workshop conducted at the University of Missouri that addressed the use of multi-omics fused with geospatial information to assess and improve the precision and environmental analysis of indicators of crew space health. The workshop addressed the state of the art of multi-omics research and practice and the potential future use of multi-omics platforms in extreme environments. The workshop also focused on potential new strategies for data collection, analysis, and fusion with crosstalk with the field of environmental health, biosecurity, and radiation safety, addressing gaps and shortfalls and potential new approaches to enhancing astronaut health safety and security. Ultimately, the panel proceedings resulted in a synthesis of new research and translational opportunities to improve space and terrestrial epidemiology. In the future, early disease prevention that employs new and expanded data sources enhanced by the analytic precision of geospatial information and artificial intelligence algorithms.Comment: 9 pages, 1 figur

    Novel Nanostructured Organosilicate Nanoparticle Coatings for Chem-Bio Sensing [abstract]

    Get PDF
    Plenary speakerWe present novel nanostructured organosilicate particulate based films and demonstrate that these materials have a great potential for chemical-biological sensor development. With unprecedented high surface areas (> 1400 m2/g) and optical transparency together with its easy surface functionalization, these materials can be readily interfaced with existing immunoassays for the rapid and trace detection of both chemical and biological warfare agents. The ultra high surface area associated with these films stems from its unique nanostructure consisting of nanoparticles (2-5nm) in a ā€œraspberryā€ structure in combination with interconnected nanopores (3-10nm). This unique nanostructure has been exploited to immobilize high areal density of sensor probes to improve the sensing performance. Two orders of magnitude increase in binding density was achieved when fluorescently tagged protein A molecules were immobilized upon these surfaces compared to flat substrates (glass and Silicon). Our on-going work applies these materials to develop platforms for multiplexed sensitive detection of biological and chemical agents at point of care for both army and civilian use

    Long-term Death Rates, West Nile Virus Epidemic, Israel, 2000

    Get PDF
    We studied the 2-year death rate of 246 adults discharged from hospital after experiencing acute West Nile Virus infection in Israel during 2000. The age- and sex-adjusted death rates were significantly higher than in the general population. This excess was greater for men. Significant adverse prognostic factors were age, male sex, diabetes mellitus, and dementia

    Establishment of Histone Modifications after Chromatin Assembly

    Get PDF
    Every cell has to duplicate its entire genome during S-phase of the cell cycle. After replication, the newly synthesized DNA is rapidly assembled into chromatin. The newly assembled chromatin ā€˜maturesā€™ and adopts a variety of different conformations. This differential packaging of DNA plays an important role for the maintenance of gene expression patterns and has to be reliably copied in each cell division. Posttranslational histone modifications are prime candidates for the regulation of the chromatin structure. In order to understand the maintenance of chromatin structures, it is crucial to understand the replication of histone modification patterns. To study the kinetics of histone modifications in vivo, we have pulse-labeled synchronized cells with an isotopically labeled arginine (15N4) that is 4 Da heavier than the naturally occurring 14N4 isoform. As most of the histone synthesis is coupled with replication, the cells were arrested at the G1/S boundary, released into S-phase and simultaneously incubated in the medium containing heavy arginine, thus labeling all newly synthesized proteins. This method allows a comparison of modification patterns on parental versus newly deposited histones. Experiments using various pulse/chase times show that particular modifications have considerably different kinetics until they have acquired a modification pattern indistinguishable from the parental histones

    IgG glycosylation and DNA methylation are interconnected with smoking

    Get PDF
    Background: Glycosylation is one of the most common post-translation modifications with large influences on protein structure and function. The effector function of immunoglobulin G (IgG) alters between pro- and anti-inflammatory, based on its glycosylation. IgG glycan synthesis is highly complex and dynamic. Methods: With the use of two different analytical methods for assessing IgG glycosylation, we aim to elucidate the link between DNA methylation and glycosylation of IgG by means of epigenome-wide association studies. In total, 3000 individuals from 4 cohorts were analyzed. Results: The overlap of the results from the two glycan measurement panels yielded DNA methylation of 7 CpG-sites on 5 genomic locations to be associated with IgG glycosylation: cg25189904 (chr.1, GNG12); cg05951221, cg21566642 and cg01940273 (chr.2, ALPPL2); cg05575921 (chr.5, AHRR); cg06126421 (6p21.33); and cg03636183 (chr.19, F2RL3). Mediation analyses with respect to smoking revealed that the effect of smoking on IgG glycosylation may be at least partially mediated via DNA methylation levels at these 7 CpG-sites. Conclusion: Our results suggest the presence of an indirect link between DNA methylation and IgG glycosylation that may in part capture environmental exposures. General significance: An epigenome-wide analysis conducted in four population-based cohorts revealed an association between DNA methylation and IgG glycosylation patterns. Presumably, DNA methylation mediates the effect of smoking on IgG glycosylation

    Welcome from Dr. Annette Sobel

    No full text
    This letter from Dr. Annette Sobel, the host of the workshop, welcomed participants and encouraged them to collaborate with each other

    Design and implementation of a virtual reality system and its application to training medical first responders

    No full text
    This paper presents the design and implementation of a distributed virtual reality (VR) platform that was developed to support the training of multiple users who must perform complex tasks in which situation assessment and critical thinking are the primary components of success. The system is fully immersive and multimodal, and users are represented as tracked, full-body figures. The system supports the manipulation of virtual objects, allowing users to act upon the environment in a natural manner. The underlying intelligent simulation component creates an interactive, responsive world in which the consequences of such actions are presented within a realistic, time-critical scenario. The focus of this work has been on the training of medical emergency-response personnel. BioSimMER, an application of the system to training first responders to an act of bio-terrorism, has been implemented and is presented throughout the paper as a concrete example of how the underlying platform architecture supports complex training tasks. Finally, a preliminary field study was performed at the Texas Engineering Extension Service Fire Protection Training Division. The study focused on individual, rather than team, interaction with the system and was designed to gauge user acceptance of VR as a training tool. The results of this study are presented

    A virtual reality patient simulation system for teaching emergency response skills to u.s. navy medical providers

    No full text
    Rapid and effective medical intervention in response to civil and military-related disasters is crucial for saving lives and limiting long-term disability. Inexperienced providers may suffer in performance when faced with limited supplies and the demands of stabilizing casualties not generally encountered in the comparatively resource-rich hospital setting. Head trauma and multiple injury cases are particularly complex to diagnose and treat, requiring the integration and processing of complex multimodal data. In this project, collaborators adapted and merged existing technologies to produce a flexible, modular patient simulation system with both three-dimensional virtual reality and two-dimensional flat screen user interfaces for teaching cognitive assessment and treatment skills. This experiential, problem-based training approach engages the user in a stress-filled, high fidelity world, providing multiple learning opportunities within a compressed period of time and without risk. The system simulates both the dynamic state of the patient and the results of user intervention, enabling trainees to watch the virtual patient deteriorate or stabilize as a result of their decision-making speed and accuracy. Systems can be deployed to the field enabling trainees to practice repeatedly until their skills are mastered and to maintain those skills once acquired. This paper describes the technologies and the process used to develop the trainers, the clinical algorithms, and the incorporation of teaching points. We also characterize aspects of the actual simulation exercise through the lens of the trainee. Copyright Ā© World Association for Disaster and Emergency Medicine 2001
    corecore