1,032 research outputs found
Theory of STM junctions for \pi-conjugated molecules on thin insulating films
A microscopic theory of the transport in a scanning tunnelling microscope
(STM) set-up is introduced for \pi-conjugated molecules on insulating films,
based on the density matrix formalism. A key role is played in the theory by
the energy dependent tunnelling rates which account for the coupling of the
molecule to the tip and to the substrate. In particular, we analyze how the
geometrical differences between the localized tip and extended substrate are
encoded in the tunnelling rate and influence the transport characteristics.
Finally, using benzene as an example of a planar, rotationally symmetric
molecule, we calculate the STM current voltage characteristics and current maps
and analyze them in terms of few relevant angular momentum channels.Comment: 19 pages, 12 figures, minor changes to conform to published versio
NMDA receptor subunit-dependent [Ca2+] signaling in individual hippocampal dendritic spines
Ca2+ influx through synaptic NMDA receptors (NMDA-Rs) triggers a variety of adaptive cellular processes. To probe NMDA-R-mediated [Ca2+] signaling, we used two-photon glutamate uncaging to stimulate NMDA-Rs on individual dendritic spines of CA1 pyramidal neurons in rat brain slices. We measured NMDA-R currents at the soma and NMDA-R-mediated [Ca2+] transients in stimulated spines (Delta[Ca2+]). Uncaging-evoked NMDA-R current amplitudes were independent of the size of the stimulated spine, implying that smaller spines contain higher densities of functional NMDA-Rs. The ratio of Delta[Ca2+] over NMDA-R current was highly variable (factor of 10) across spines, especially for small spines. These differences were not explained by heterogeneity in spine sizes or diffusional coupling between spines and their parent dendrites. In addition, we find that small spines have NMDA-R currents that are sensitive to NMDA-R NR2B subunit-specific antagonists. With block of NR2B-containing receptors, the range of Delta[Ca2+]/NMDA-R current ratios and their average value were much reduced. Our data suggest that individual spines can regulate the subunit composition of their NMDA-Rs and the effective fractional Ca2+ current through these receptors
Nonlinear [Ca2+] signaling in dendrites and spines caused by activity-dependent depression of Ca2+ extrusion
Spine Ca2+ triggers the induction of synaptic plasticity and other adaptive neuronal responses. The amplitude and time course of Ca2+ signals specify the activation of the signaling pathways that trigger different forms of plasticity such as long-term potentiation and depression. The shapes of Ca2+ signals are determined by the dynamics of Ca2+ sources, Ca2+ buffers, and Ca2+ extrusion mechanisms. Here we show in rat CA1 pyramidal neurons that plasma membrane Ca2+ pumps (PMCAs) and Na+/Ca2+ exchangers are the major Ca2+ extrusion pathways in spines and small dendrites. Surprisingly, we found that Ca2+ extrusion via PMCA and Na+/Ca2+ exchangers slows in an activity-dependent manner, mediated by intracellular Na+ and Ca2+ accumulations. This activity-dependent depression of Ca2+ extrusion is, in part, attributable to Ca2+-dependent inactivation of PMCAs. Ca2+ extrusion recovers from depression with a time constant of 0.5 s. Depression of Ca2+ extrusion provides a positive feedback loop, converting small differences in stimuli into large differences in Ca2+ concentration. Depression of Ca2+ extrusion produces Ca2+ concentration dynamics that depend on the history of neuronal activity and therefore likely modulates the induction of synaptic plasticity
Risk of climate-induced damage in historical textiles
Eleven wool and silk historic textiles and two modern artist's canvases were examined to determine their water vapour adsorption, moisture dimensional response and tensile behaviour. All the textiles showed a similar general pattern of moisture response. A rise in ambient relative humidity (RH) from dry conditions produced expansion of a textile until a certain critical RH level after which a contraction occurred to a greater or lesser degree depending on the yarn crimp and the weave geometry. The largest expansion recorded between the dry state and 80% RH was 1.2 and 0.9% for wool and silk textiles, respectively. The largest shrinkage of 0.8% at high RH range was experienced by a modern linen canvas. Two potential damage mechanisms related to the moisture response of the textiles—stress building as a result of shrinkage of the textile restrained in its dimensional response and the fretting fatigue when yarns move with friction one against another—were found insignificant in typical textile display environments unless the textiles are severely degraded or excessively strained in their mounting
Statistics of non-linear stochastic dynamical systems under L\'evy noises by a convolution quadrature approach
This paper describes a novel numerical approach to find the statistics of the
non-stationary response of scalar non-linear systems excited by L\'evy white
noises. The proposed numerical procedure relies on the introduction of an
integral transform of Wiener-Hopf type into the equation governing the
characteristic function. Once this equation is rewritten as partial
integro-differential equation, it is then solved by applying the method of
convolution quadrature originally proposed by Lubich, here extended to deal
with this particular integral transform. The proposed approach is relevant for
two reasons: 1) Statistics of systems with several different drift terms can be
handled in an efficient way, independently from the kind of white noise; 2) The
particular form of Wiener-Hopf integral transform and its numerical evaluation,
both introduced in this study, are generalizations of fractional
integro-differential operators of potential type and Gr\"unwald-Letnikov
fractional derivatives, respectively.Comment: 20 pages, 5 figure
Initial report from the ICFA Neutrino Panel
In July 2013 ICFA established the Neutrino Panel with the mandate "To promote
international cooperation in the development of the accelerator-based
neutrino-oscillation program and to promote international collaboration in the
development a neutrino factory as a future intense source of neutrinos for
particle physics experiments". This, the Panel's Initial Report, presents the
conclusions drawn by the Panel from three regional "Town Meetings" that took
place between November 2013 and February 2014.
After a brief introduction and a short summary of the status of the knowledge
of the oscillation parameters, the report summarises the approved programme and
identifies opportunities for the development of the field. In its conclusions,
the Panel recognises that to maximise the discovery potential of the
accelerator-based neutrino-oscillation programme it will be essential to
exploit the infrastructures that exist at CERN, FNAL and J-PARC and the
expertise and resources that reside in laboratories and institutes around the
world. Therefore, in its second year, the Panel will consult with the
accelerator-based neutrino-oscillation community and its stakeholders to:
develop a road-map for the future accelerator-based neutrino-oscillation
programme that exploits the ambitions articulated at CERN, FNAL and J-PARC and
includes the programme of measurement and test-beam exposure necessary to
ensure the programme is able to realise its potential; develop a proposal for a
coordinated "Neutrino RD" programme, the accelerator and detector R&D programme
required to underpin the next generation of experiments; and to explore the
opportunities for the international collaboration necessary to realise the
Neutrino Factory.Comment: ICFA Neutrino Panel 2014(01
Stochastic contribution to the growth factor in the LCDM model
We study the effect of noise on the evolution of the growth factor of density
perturbations in the context of the LCDM model. Stochasticity is introduced as
a Wiener process amplified by an intensity parameter alpha. By comparing the
evolution of deterministic and stochastic cases for different values of alpha
we estimate the intensity level necessary to make noise relevant for
cosmological tests based on large-scale structure data. Our results indicate
that the presence of random forces underlying the fluid description can lead to
significant deviations from the nonstochastic solution at late times for
alpha>0.001.Comment: 6 pages, 1 figur
Information dynamics: Temporal behavior of uncertainty measures
We carry out a systematic study of uncertainty measures that are generic to
dynamical processes of varied origins, provided they induce suitable continuous
probability distributions. The major technical tool are the information theory
methods and inequalities satisfied by Fisher and Shannon information measures.
We focus on a compatibility of these inequalities with the prescribed
(deterministic, random or quantum) temporal behavior of pertinent probability
densities.Comment: Incorporates cond-mat/0604538, title, abstract changed, text
modified, to appear in Cent. Eur. J. Phy
- …
