This paper describes a novel numerical approach to find the statistics of the
non-stationary response of scalar non-linear systems excited by L\'evy white
noises. The proposed numerical procedure relies on the introduction of an
integral transform of Wiener-Hopf type into the equation governing the
characteristic function. Once this equation is rewritten as partial
integro-differential equation, it is then solved by applying the method of
convolution quadrature originally proposed by Lubich, here extended to deal
with this particular integral transform. The proposed approach is relevant for
two reasons: 1) Statistics of systems with several different drift terms can be
handled in an efficient way, independently from the kind of white noise; 2) The
particular form of Wiener-Hopf integral transform and its numerical evaluation,
both introduced in this study, are generalizations of fractional
integro-differential operators of potential type and Gr\"unwald-Letnikov
fractional derivatives, respectively.Comment: 20 pages, 5 figure