28 research outputs found

    Mechanical and tribological properties of Ti-containing carbon nanocomposite coatings deposited on TiAlV alloys

    No full text
    Ti-doped carbon coatings were deposited on TiAlV alloys by reactive dc-magnetron sputtering in Ar/CH4 mixed gas. When Ar flow increases the incorporation of Ti into films raises while the concentration of C decreases. The formed nanometric TiC crystals were more noticeable for coatings deposited with higher Ar flows. Hardness (H) and elastic modulus (E) of coatings were measured by nanoindentation. H values were in the range of 8.8-15.9 GPa and E of 53.4-113.7 GPa. Higher values for H and E were obtained for films containing larger amount of TiC-phase. The presence of TiC crystals increased the coefficient of friction (COF) from 0.07 to 0.28 in scratch tests. Tribological experiments were carried out by using a pin-on-disk apparatus in air and in liquid. COF values ranged from 0.10 to 0.50 for tests in air. Despite of presenting higher COF, tests performed in liquid resulted in less pronounced wear tracks

    A tryptophanol-derived oxazolopiperidone lactam is cytotoxic against tumors via inhibition of p53 interaction with murine double minute proteins

    No full text
    Inactivation of the p53 tumor suppressor protein by interaction with murine double minute (MDM) proteins, MDM2 and MDMX, is a common event in human tumors expressing wild-type p53. In these tumors, the simultaneous inhibition of these interactions with MDMs, for a full p53 reactivation, represents a promising anticancer strategy. Herein, we report the identification of a dual inhibitor of the p53 interaction with MDM2 and MDMX, the (S)-tryptophanol derivative OXAZ-1, from the screening of a small library of enantiopure tryptophanol-derived oxazolopiperidone lactams, using a yeast-based assay. With human colon adenocarcinoma HCT116 cell lines expressing wild-type p53 (HCT116 p53+/+) and its p53-null isogenic derivative (HCT116 p53−/−), it was shown that OXAZ-1 induced a p53-dependent tumor growth-inhibitory effect. In fact, OXAZ-1 induced p53 stabilization, up-regulated p53 transcription targets, such as MDM2, MDMX, p21, Puma and Bax, and led to PARP cleavage, in p53+/+, but not in p53−/−, HCT116 cells. In addition, similar tumor cytotoxic effects were observed for OXAZ-1 against MDMXoverexpressing breast adenocarcinoma MCF-7 tumor cells, commonly described as highly resistant to MDM2-only inhibitors. In HCT116 p53+/+ cells, the disruption of the p53 interaction with MDMs by OXAZ- 1 was further confirmed by co-immunoprecipitation. It was also shown that OXAZ-1 potently triggered a p53-dependent mitochondria-mediated apoptosis, characterized by reactive oxygen species generation, mitochondrial membrane potential dissipation, Bax translocation to mitochondria, and cytochrome c release, and exhibited a p53-dependent synergistic effect with conventional chemotherapeutic drugs. Collectively, in this work, a novel selective activator of the p53 pathway is reported with promising antitumor properties to be explored either alone or combined with conventional chemotherapeutic drugs. Moreover, OXAZ-1 may represent a promising starting scaffold to search for new dual inhibitors of the p53 MDMs interaction

    A tryptophanol-derived oxazolopiperidone lactam is cytotoxic against tumors via inhibition of p53 interaction with murine double minute proteins

    No full text
    Inactivation of the p53 tumor suppressor protein by interaction with murine double minute (MDM) proteins, MDM2 and MDMX, is a common event in human tumors expressing wild-type p53. In these tumors, the simultaneous inhibition of these interactions with MDMs, for a full p53 reactivation, represents a promising anticancer strategy. Herein, we report the identification of a dual inhibitor of the p53 interaction with MDM2 and MDMX, the (S)-tryptophanol derivative OXAZ-1, from the screening of a small library of enantiopure tryptophanol-derived oxazolopiperidone lactams, using a yeast-based assay. With human colon adenocarcinoma HCT116 cell lines expressing wild-type p53 (HCT116 p53+/+) and its p53-null isogenic derivative (HCT116 p53−/−), it was shown that OXAZ-1 induced a p53-dependent tumor growth-inhibitory effect. In fact, OXAZ-1 induced p53 stabilization, up-regulated p53 transcription targets, such as MDM2, MDMX, p21, Puma and Bax, and led to PARP cleavage, in p53+/+, but not in p53−/−, HCT116 cells. In addition, similar tumor cytotoxic effects were observed for OXAZ-1 against MDMXoverexpressing breast adenocarcinoma MCF-7 tumor cells, commonly described as highly resistant to MDM2-only inhibitors. In HCT116 p53+/+ cells, the disruption of the p53 interaction with MDMs by OXAZ- 1 was further confirmed by co-immunoprecipitation. It was also shown that OXAZ-1 potently triggered a p53-dependent mitochondria-mediated apoptosis, characterized by reactive oxygen species generation, mitochondrial membrane potential dissipation, Bax translocation to mitochondria, and cytochrome c release, and exhibited a p53-dependent synergistic effect with conventional chemotherapeutic drugs. Collectively, in this work, a novel selective activator of the p53 pathway is reported with promising antitumor properties to be explored either alone or combined with conventional chemotherapeutic drugs. Moreover, OXAZ-1 may represent a promising starting scaffold to search for new dual inhibitors of the p53 MDMs interaction
    corecore