229 research outputs found

    Unveiling the molecular determinants responsible for NAD(P)(H) cofactor specificity using enzyme structural information

    Get PDF
    EJIBCE 2016 - IV Encontro de Jovens Investigadores de Biologia Computacional EstruturalIn this post-genomic era, gene homology annotations have become the foundation of systems biology. However, errors spread easily when functional annotation is not performed carefully due to overly unconstrained homology metrics [1,2]. As metabolic model reconstructions become a relevant tool for performing fundamental studies and bioprocess design, the impact of accurate enzymatic function assignments becomes evident [3]. The uncertainty of the usage of NADP(H) or NAD(H) as co-factors [4], even in well performed annotations, has a major impact in metabolic engineering applications, severely affecting Genome-scale metabolic model reconstruction due to the potential insertion of misleading reactions. In this work, we unveiled the molecular determinants for cofactor speci- ficity, using enzyme structural information. In order to do so, we created a representative dataset of all enzymes present in the PDB with NAD(P)(H) as cofactors and measured the occurrence of every aminoacid residue at a distance of 3.5 Angstrom[5] of all cofactor atoms. This allowed us to create a matrix with the total number of aminoacid residues at interacting distances from all cofactor atoms, for all structures. After analyzing the matrix, we identified the residues that had a signifi- cantly higher number of contacts with the cofactors, and in which atoms this occurred. With the intent of applying these findings in the unveiling of cofactor specificity for enzymes that are not structurally characterized experimentally we successfully replicated these findings using machine learning algorithms. In future work we will apply the results and machine learning models obtained in order to assign cofactor specificity to enzymes with uncertain cofactor specificity. These results may represent an important development in systems biology by allowing the reduction of annotation errors and the implementation of erroneous or redundant reactions in GEM models, improving the overall performance of metabolic simulations.info:eu-repo/semantics/publishedVersio

    Specific amino acids of Olive mild mosaic virus coat protein are involved in transmission by Olpidium brassicae

    Get PDF
    Abstract: Transmission of Olive mild mosaic virus (OMMV) is facilitated by Olpidium brassicae (Wor.) Dang. An OMMV mutant (OMMVL11) containing two changes in the coat protein (CP), asparagine to tyrosine at position 189 and alanine to threonine at position 216, has been shown not to be Olpidium brassicae-transmissible owing to inefficient attachment of virions to zoospores. In this study, these amino acid changes were separately introduced into the OMMV genome through site-directed mutagenesis, and the asparagine-to-tyrosine change was shown to be largely responsible for the loss of transmission. Analysis of the structure of OMMV CP by comparative modelling approaches showed that this change is located in the interior of the virus particle and the alanine-to-threonine change is exposed on the surface. The asparagine-to-tyrosine change may indirectly affect attachment via changes in the conformation of viral CP subunits, altering the receptor binding site and thus preventing binding to the fungal zoospore

    Studying O2 pathways in [NiFe]- and [NiFeSe]-hydrogenases

    Get PDF
    Hydrogenases are efficient biocatalysts for H2 production and oxidation with various potential biotechnological applications.[NiFe]-class hydrogenases are highly active in both production and oxidation processes—albeit primarily biased to the latter—but suffer from being sensitive to O2.[NiFeSe] hydrogenases are a subclass of [NiFe] hydrogenases with, usually, an increased insensitivity to aerobic environments. In this study we aim to understand the structural causes of the low sensitivity of a [NiFeSe]-hydrogenase, when compared with a [NiFe] class enzyme, by studying the diffusion of O2. To unravel the differences between the two enzymes, we used computational methods comprising Molecular Dynamics simulations with explicit O2 and Implicit Ligand Sampling methodologies. With the latter, we were able to map the free energy landscapes for O2 permeation in both enzymes. We derived pathways from these energy landscapes and selected the kinetically more relevant ones with reactive flux analysis using transition path theory. These studies evidence the existence of quite different pathways in both enzymes and predict a lower permeation efficiency for O2 in the case of the [NiFeSe]-hydrogenase when compared with the [NiFe] enzyme. These differences can explain the experimentally observed lower inhibition by O2 on [NiFeSe]-hydrogenases, when compared with [NiFe]-hydrogenases. A comprehensive map of the residues lining the most important O2 pathways in both enzymes is also presented.publishersversionpublishe

    The importance of lipid conjugation on anti-fusion peptides against Nipah virus

    Get PDF
    © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Nipah virus (NiV) is a recently emerging zoonotic virus that belongs to the Paramyxoviridae family and the Henipavirus genus. It causes a range of conditions, from asymptomatic infection to acute respiratory illness and fatal encephalitis. The high mortality rate of 40 to 90% ranks these viruses among the deadliest viruses known to infect humans. Currently, there is no antiviral drug available for Nipah virus disease and treatment is only supportive. Thus, there is an urgent demand for efficient antiviral therapies. NiV F protein, which catalyzes fusion between the viral and host membranes, is a potential target for antiviral drugs, as it is a key protein in the initial stages of infection. Fusion inhibitor peptides derived from the HRC-domain of the F protein are known to bind to their complementary domain in the protein's transient intermediate state, preventing the formation of a six-helix bundle (6HB) thought to be responsible for driving the fusion of the viral and cell membranes. Here, we evaluated the biophysical and structural properties of four different C-terminal lipid-tagged peptides. Different compositions of the lipid tags were tested to search for properties that might promote efficacy and broad-spectrum activity. Fluorescence spectroscopy was used to study the interaction of the peptides with biomembrane model systems and human blood cells. In order to understand the structural properties of the peptides, circular dichroism measurements and molecular dynamics simulations were performed. Our results indicate a peptide preference for cholesterol-enriched membranes and a lipid conjugation-driven stabilization of the peptide α-helical secondary structure. This work may contribute for the development of highly effective viral fusion against NiV inhibitors.This work was financially supported by Fundação para a Ciência e a Tecnologia—Ministério da Ciência, Tecnologia e Ensino Superior (FCT-MCTES, Portugal), through projects PTDC/BBB-BQB/3494/2014, PTDC/QUI-BIQ/114774/2009, PTDC/CCI-BIO/28200/2017 and Pest-OE/EQB/LA0004/2011, and by National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), project R01AI114736, lead by Anne Moscona (Columbia University Medical Center, NY, USA). This work was also financially supported by Project LISBOA-01-0145-FEDER-007660 (Microbiologia Molecular, Estrutural e Celular) funded by FEDER funds through COMPETE2020-Programa Operacional Competitividade e Internacionalização (POCI) and by national funds through FCT-MCTES. MCM, PMS and DL were supported by FCT-MCTES fellowships SFRH/BPD/118731/2016, SFRH/BD/118413/2016 and SFRH/BPD/92537/2013, respectively.info:eu-repo/semantics/publishedVersio

    Mechanisms underlying dioxygen reduction in laccases. Structural and modelling studies focusing on proton transfer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Laccases are enzymes that couple the oxidation of substrates with the reduction of dioxygen to water. They are the simplest members of the multi-copper oxidases and contain at least two types of copper centres; a mononuclear T1 and a trinuclear that includes two T3 and one T2 copper ions. Substrate oxidation takes place at the mononuclear centre whereas reduction of oxygen to water occurs at the trinuclear centre.</p> <p>Results</p> <p>In this study, the CotA laccase from <it>Bacillus subtilis </it>was used as a model to understand the mechanisms taking place at the molecular level, with a focus in the trinuclear centre. The structures of the holo-protein and of the oxidised form of the apo-protein, which has previously been reconstituted <it>in vitro </it>with Cu(I), have been determined. The former has a dioxygen moiety between the T3 coppers, while the latter has a monoatomic oxygen, here interpreted as a hydroxyl ion. The UV/visible spectra of these two forms have been analysed in the crystals and compared with the data obtained in solution. Theoretical calculations on these and other structures of CotA were used to identify groups that may be responsible for channelling the protons that are needed for reduction of dioxygen to water.</p> <p>Conclusions</p> <p>These results present evidence that Glu 498 is the only proton-active group in the vicinity of the trinuclear centre. This strongly suggests that this residue may be responsible for channelling the protons needed for the reduction. These results are compared with other data available for these enzymes, highlighting similarities and differences within laccases and multicopper oxidases.</p

    Cinesiterapia e Massoterapia

    Get PDF

    The amino acids motif-32GSSYN36-in the catalytic domain of E. coli flavorubredoxin NO reductase is essential for its activity

    Get PDF
    Funding Information: Funding: This study was financially supported by the Portuguese Fundação para a Ciência e Tec-nologia (FCT), grants PTDC/BIA-BQM/27959/2017 and PTDC/BIA-BQM/0562/2020, and Project MOSTMICRO-ITQB with references UIDB/04612/2020 and UIDP/04612/2020. This project has also received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement 810856. MCM is the recipient of FCT grant SFRH/BD/143651/2019. BAS is the recipient of FCT grant DFA/BD/8066/2020. Funding Information: This study was financially supported by the Portuguese Funda??o para a Ci?ncia e Tecnologia (FCT), grants PTDC/BIA-BQM/27959/2017 and PTDC/BIA-BQM/0562/2020, and Project MOSTMICRO-ITQB with references UIDB/04612/2020 and UIDP/04612/2020. This project has also received funding from the European Union?s Horizon 2020 research and innovation program under grant agreement 810856. MCM is the recipient of FCT grant SFRH/BD/143651/2019. BAS is the recipient of FCT grant DFA/BD/8066/2020. Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Flavodiiron proteins (FDPs) are a family of modular and soluble enzymes endowed with nitric oxide and/or oxygen reductase activities, producing N2O or H2O, respectively. The FDP from Escherichia coli, which, apart from the two core domains, possesses a rubredoxin-like domain at the C-terminus (therefore named flavorubredoxin (FlRd)), is a bona fide NO reductase, exhibiting O2 reducing activity that is approximately ten times lower than that for NO. Among the flavorubredoxins, there is a strictly conserved amino acids motif,-G[S,T]SYN-, close to the catalytic diiron center. To assess its role in FlRd’s activity, we designed several site-directed mutants, replacing the conserved residues with hydrophobic or anionic ones. The mutants, which maintained the general characteristics of the wild type enzyme, including cofactor content and integrity of the diiron center, revealed a decrease of their oxygen reductase activity, while the NO reductase activity—specifically, its physiological function—was almost completely abolished in some of the mutants. Molecular modeling of the mutant proteins pointed to subtle changes in the predicted structures that resulted in the reduction of the hydration of the regions around the conserved residues, as well as in the elimination of hydrogen bonds, which may affect proton transfer and/or product release.publishe

    Tailoring cutinase activity towards polyethylene terephthalate and polyamide 6,6 fibers

    Get PDF
    Cutinase from Fusarium solani pisi was genetically modified near the active site, by site-directed mutagenesis, to enhance its activity towards polyethylene terephthalate (PET) and polyamide 6,6 (PA 6,6) fibers. The mutations L81A, N84A, L182A, V184A and L189A were done to enlarge the active site in order to better fit a larger polymer chain. Modeling studies have shown enhanced free energy stabilization of model substrate tetrahedral intermediate (TI) bound at the enzyme active site for all mutants, for both model polymers. L81A and L182A showed an activity increase of four- and five-fold, respectively, when compared with the wild type, for PET fibers. L182A showed the one- and two-fold higher ability to biodegrade aliphatic polyamide substrates. Further studies in aliphatic polyesters seem to indicate that cutinase has higher ability to recognize aliphatic substrates.Fundação para a Ciência e a Tecnologia (FCT) - SFRH/BD/22490/2005, SFRH/BD/22149/2005European Community - Biosyntex Project, no. G5RD-CT-2000-30110 “Competitive and Sustainable Growth

    Effect of pH on the influenza fusion peptide properties unveiled by constant-pH molecular dynamics simulations combined with experiment

    Get PDF
    © The Author(s) 2020. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.The influenza virus fusion process, whereby the virus fuses its envelope with the host endosome membrane to release the genetic material, takes place in the acidic late endosome environment. Acidification triggers a large conformational change in the fusion protein, hemagglutinin (HA), which enables the insertion of the N-terminal region of the HA2 subunit, known as the fusion peptide, into the membrane of the host endosome. However, the mechanism by which pH modulates the molecular properties of the fusion peptide remains unclear. To answer this question, we performed the first constant-pH molecular dynamics simulations of the influenza fusion peptide in a membrane, extending for 40 µs of aggregated time. The simulations were combined with spectroscopic data, which showed that the peptide is twofold more active in promoting lipid mixing of model membranes at pH 5 than at pH 7.4. The realistic treatment of protonation introduced by the constant-pH molecular dynamics simulations revealed that low pH stabilizes a vertical membrane-spanning conformation and leads to more frequent contacts between the fusion peptide and the lipid headgroups, which may explain the increase in activity. The study also revealed that the N-terminal region is determinant for the peptide's effect on the membrane.This work was financially supported by FCT—Fundação para a Ciência e a Tecnologia, Portugal, through projects PTDC/QUI-BIQ/114774/2009, PTDC/CCI-BIO/28200/2017 and Pest-OE/EQB/LA0004/2011. This work was also financially supported by Project LISBOA-01-0145-FEDER-007660 (Microbiologia Molecular, Estrutural e Celular) funded by FEDER funds through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI) and by national funds through FCT—Fundação para a Ciência e a Tecnologia. DL was supported by FCT post-doc fellowship SFRH/BPD/92537/2013.info:eu-repo/semantics/publishedVersio
    corecore