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Studying O, pathways in [NiFe]-
and [NiFeSe]-hydrogenases
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Hydrogenases are efficient biocatalysts for H, production and oxidation with various potential
biotechnological applications.[NiFe]-class hydrogenases are highly active in both production and
oxidation processes—albeit primarily biased to the latter—but suffer from being sensitive to O,.
[NiFeSe] hydrogenases are a subclass of [NiFe] hydrogenases with, usually, an increased insensitivity
to aerobic environments. In this study we aim to understand the structural causes of the low
sensitivity of a [NiFeSe]-hydrogenase, when compared with a [NiFe] class enzyme, by studying

the diffusion of O,. To unravel the differences between the two enzymes, we used computational
methods comprising Molecular Dynamics simulations with explicit O, and Implicit Ligand Sampling
methodologies. With the latter, we were able to map the free energy landscapes for O, permeation

in both enzymes. We derived pathways from these energy landscapes and selected the kinetically
more relevant ones with reactive flux analysis using transition path theory. These studies evidence the
existence of quite different pathways in both enzymes and predict a lower permeation efficiency for
O, in the case of the [NiFeSe]-hydrogenase when compared with the [NiFe] enzyme. These differences
can explain the experimentally observed lower inhibition by O, on [NiFeSe]-hydrogenases, when
compared with [NiFe]-hydrogenases. A comprehensive map of the residues lining the most important
0O, pathways in both enzymes is also presented.

Hydrogenases are metalloenzymes that catalyse the reaction of H,==2H" + 2e'~*. Functioning at a high turnover
frequency, they are considered the most efficient noble-metal free H, production and oxidation catalysts, being
at least as effective as economically expensive platinum based catalysts®~. Their applications are many, ranging
from fuel cells to electro- and photocatalysis®’. Studying their catalytic mechanisms is very important for mak-
ing H, an economically viable, carbon-free alternative to current energy sources. Most hydrogenases are sensi-
tive to O,, which is one of the major problems for their use in large scale applications®. Therefore, studying the
behaviour of O, inside the structure can be extremely valuable and may open new avenues in their engineering.

Hydrogenase nomenclature is based on the composition of their bimetallic active centre, with [NiFe]- and
[FeFe]-hydrogenases being the two most common hydrogenases in nature?.[FeFe]-hydrogenases are generally
irreversibly inactivated and damaged by O,?, while the [NiFe]-class shows a more diverse behaviour towards
exposure, being typically reversible®'°. Reflecting on the heterogeneity and variety of different hydrogenases a
classification was proposed for the known enzymes, taking into account the composition of the active centres,
physiological function and cellular location™. In this classification four groups of [NiFe]-hydrogenases exist—
being divided by function and location. The present study focuses on two hydrogenases belonging to group 1,
membrane-bound H, uptaking [NiFe]-hydrogenases: A group la Desulfubrio gigas [NiFe]-hydrogenase and a
group 1b Desulfubrio vulgaris [NiFeSe]-hydrogenase.

There are several common features among the group 1 hydrogenases. They are ~ 100 kDa, periplasmatic,
multi-subunited proteins, which are often membrane bound and very sensitive to temperature and pH altera-
tions. These features define what we call ‘standard’ [NiFe] hydrogenases, which are normally oxygen sensitive
group 1 hydrogenases. However, ‘non-standard” hydrogenases exist and display very different and interesting
characteristics, ranging from oxygen insensitivity (even in environmental conditions) to thermostability. These
enzymes often display active centres similar to the ‘standard’ ones, which raises the hypothesis that oxygen insen-
sitivity may indeed come from the surrounding structure of each centre. Most [NiFe] hydrogenases are primarily
hydrogen catalysts, which supports their biotechnological interest, for instance in fuel cells'’.

The inactivation of standard [NiFe] hydrogenases occurs by the formation of a mixture of two inactive states
(Ni-A and Ni-B) in the active centre'>!. While in the inactive states, the Ni ion is in a Ni(III) oxidation state
and a bridging hydroxo ligand is present between the Ni and Fe ions'%; other modifications also contribute to
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Figure 1. Molecular representation of the active sites of [NiFe]- and [NiFeSe]-hydrogenases, containing their
protein (cysteine and selenocysteine residue, truncated at the C-alpha) and non-protein ligands (CO and

CN"). The selenocysteine residue is highlighted by a black circle). The color coding of the different atoms is the
following: carbon: green; oxygen: red; nitrogen: blue; sulphur: yellow; selenium: magenta; nickel: dark gray; iron:
orange. Labels are placed to identify the metals, protein residues and ligands.

the inhibition, as the oxidation of the sulfur ligands**'**%, and the main difference between the Ni-A and Ni-B
states has been proposed to be an S-oxygenated bridging cysteine in the former when compared with the latter'.

[NiFeSe]-hydrogenases are a subclass of [NiFe]-hydrogenases, which are mainly characterized by having a
selenocysteine coordinating the Nickel in the active site' (Fig. 1). They display, particularly in the case of the
hydrogenase we are studying, very interesting properties, such as high catalytic activities and shorter reactivation
times when exposed to O,, when compared to [NiFe]-hydrogenases, making them more suited to biotechnologi-
cal applications'®?. Recovery time from the oxidised states is remarkably different, as [NiFeSe]-hydrogenase is
extremely fast, while standard [NiFe] can take several hours?!.

Most [NiFeSe] hydrogenases are isolated from organisms that inhabit in anaerobic habitats®?, therefore not
having any evolutionary pressure to establish O, protection mechanisms.

Structurally, the two hydrogenases enzymes that we study here are almost identical, being comprised by of
two subunits. The active site lies deep inside the large subunit, while the small subunit generally contains three
iron-sulphur clusters in a wire like formation, forming an electron transfer chain between the active site and the
enzyme surface. The exact cluster composition differs: in the O, insensitive [NiFeSe]-hydrogenase the iron-sulfur
clusters are all [4Fe4S], while in [NiFe]-hydrogenase there are two [4Fe4S] and one [3Fe4S]***-%.

Several structural features of the [NiFeSe] hydrogenase have been evidenced to explain its catalytic prowess:
the “cage effect” of the protein structure surrounding the active site*®, differences in residues comprising pro-
ton transfer pathways and H, channels?” and the nature of the selenocysteine complex. The complex has been
suggested** to have a severe influence on the O, sensitivity of the [NiFeSe]-hydrogenase, both by promoting the
rapid recovery from O, damage as well for increasing H, production?-*’. Other factors, such as the access of O,
to the active site, may also play a role in the unique feature of [NiFeSe] hydrogenases.

Determining the O, paths via experimental methods is very challenging, as O, is very mobile, has a low elec-
tron count and weak interaction with amino acids®'. Therefore, computational studies on the subject are then a
valuable way to propose pathways by directly observing a representation of the nature of the phenomenon in an
atomic level. MD simulation studies, and techniques using this type of simulation data, are particularly promis-
ing, since they can go beyond the “static” picture conveyed by many experimental structural data (which often
correspond to averages over molecular configurations and time), by sampling many discrete configurational
states, providing a molecular ensemble of states that can be analysed in full detail. Additionally, these method-
ologies, coupled with special techniques, can provide energetic estimates of micro- and macro-state transitions
of experimentally correlatable phenomena, such as O, permeation studied here.

Permeation pathways for entrance of H, in [NiFe]- and [NiFeSe]-hydrogenases have been studied using com-
putational methods by us and other authors?**%, but the subject of O, permeation has been less studied**?, and,
to the best of our knowledge, never studied on a [NiFeSe]-hydrogenase. Therefore, the aim of the present work
is to study a [NiFe]- and a [NiFeSe]-hydrogenase to compare their differences in O, internalization, diffusion
and protection inside the protein structures, trying to unravel the structural and dynamic differences that might
explain the different O,-sensitivity. With the present study, we were able to map the free energy landscape for O,
permeation on both enzymes and found very marked differences. Analysing these landscapes using probabilistic
models has shown evidence for a more defined pathway for O, internalization in [NiFe]-hydrogenase and a more
diffuse and less specific set of pathways in [NiFeSe]-hydrogenase.
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Figure 2. Top—slice of the protein structure with PDF’s represented by wireframe meshes at probability 0.002.
PDFs were calculated from 35 to 70 ns. The proteins are represented by a green ribbon while metal centres are
represented using sticks. The centres are represented as sticks with the iron atoms coloured light orange, nickel
in gray, carbon in green, oxygen in red, nitrogen in blue and sulphur in yellow. Bottom—average number of
internalized O, molecules over time.

Results and discussion

Molecular Dynamics (MD) simulations were performed on a [NiFe]- and a [NiFeSe]-hydrogenase structures
(PDB ids 2FRV and 2WPN, respectively). Two sets of simulations were run for each enzyme; the first in water
with counter-ions and the second in water, counter-ions and 100 molecules of explicit O,. Five trajectories for
each set and enzyme were run, each lasting 100 ns (for the simulations in water and counter-ions) or 70 ns (for
the simulations in water, counter-ions and O,).

The trajectories for both enzymes in water show a stability plateau after about 20-30 ns, as can be seen in
Figure S1 of Supplementary material, which displays the c-alpha atomic positions root mean square deviations
(RMSD). Additionally, introducing the O, in the system did not compromise this stability.

To illustrate O, internalization we calculated average Probability Density Functions (PDFs) from the five tra-
jectories calculated for each hydrogenase (Fig. 2). The probability maps show similar patterns of internalization
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on both enzymes, with a main channel, in an approximately perpendicular orientation with the line formed by
the three FeS centres leading to the active site (but relatively far from it). There are also diffuse zones of higher
probability all around both enzymes and several zones where the probability is not continuous. There are not
enough continuous zones of high O, probability near the active centres to be able to define pathways. This is
likely due to the insufficient sampling provided by the simulated timescale.

Figure 2 also contains a plot of O, internalization, which shows that the quantity of molecules internalised
reaches a plateau at ~ 30 molecules out of the total 100, for both enzymes, and this process is relatively fast
(~10 ns) in both cases. From this data, we conclude that, within the simulated time scale, both the [NiFe] and
the [NiFeSe] enzymes, do not show any differences in the capacity to internalise and hold molecular oxygen.

Interesting as these results may be, it is also clear that the sampling obtained in the time scale of these simula-
tions does not allow to adequately find clear paths for molecular oxygen permeation, up until the active site zone.
This is in contrast with our previous experience with molecular hydrogen in these hydrogenases, which rapidly
reaches the active site?>?”** and this is certainly due to the significant larger size of molecular oxygen, when
compared with molecular hydrogen. We have previously observed this type of situation on oxygen metabolis-
ing enzymes®*® and the solution we used in these cases was to resort to Implicit Ligand Sampling (ILS), which
can explore higher energy zones in the permeation free energy surface. This was the route we decided to follow
in the present work, and use the oxygen free trajectories of the enzymes in water to infer about the free energy
surface of molecular oxygen placement, in the whole space of the hydrogenases.

By applying the ILS methodology to a trajectory, O, was forced in the whole space of both enzymes, mapping
even the deeper structural layers. This comprehensive analysis allowed a detailed examination of the free energy
interaction landscape between molecular oxygen and the whole protein, including the active centre zone. This
interaction free energy includes the enzyme’s natural conformational variability, as sampled by the five replicate
trajectories along the selected simulated time (the last 10 ns of these trajectories). Note that what is averaged here
is the interaction free energy between molecular oxygen and the protein, since the ILS calculations are performed
in every frame selected from the five replicate trajectories and not on their average conformations. Figure 3A,
D displays the results of this method applied to the five trajectories of the [NiFe]- and [NiFeSe]-hydrogenases,
respectively.

These results are consistent with the MD simulations with molecular oxygen, as the lower energy zones are
roughly similar with the higher PDFs evidenced on Fig. 2. However, in the case of the ILS results of Fig. 3, low
probability zones near the active sites can also be defined, evidencing the higher sampling power of ILS, when
compared with the MD simulations with explicit O,.

Panels B and E of Fig. 3 show that the tessellation pathways are extremely intricate; a detailed visual observa-
tion (results not shown) evidences multiple low energy paths coming from the outside of both hydrogenases.
These multiple low free energy basins occur in regions correlatable with the entry pathways found in MD with
explicit O,.

Figure 3 also contains (panels C and F) the ILS pathways found near the active centres, represented by the
minima (as spheres) and the paths between minima (as cartoon traces). By analysing these two landscapes near
the active centres, it is evident that the [NiFe]-hydrogenase contains more low energy basins near the cysteine
that is replaced by a selenocysteine (Sec) in the [NiFeSe] enzyme, the latter being relatively empty of basins in
the same location (circled zones in panels C and F of Fig. 3). This is already an indication for the higher difficulty
of placing O, near the active site in the [NiFeSe]-hydrogenase, when compared with the [NiFe] counterpart.
Part of the reasons for this may lie on the larger size of the selenium of selenocysteine, when compared with the
sulphur of cysteine. Therefore, the protein structure and dynamics of the [NiFeSe]-hydrogenase seem to be better
adapted to reduce the O, access to the active site, when compared with the [NiFe]-hydrogenase, which can be
used to explain the lower O, sensitivity of the former, when compared with the latter. This is interesting and in
contrast with our findings for H, permeation?’, where, using MD simulations, we found higher density for H,
in [NiFeSe]-hydrogenase, when compared with the [NiFe]-hydrogenase. We hypothesized that this different H,
permeation was the molecular basis to explain the higher catalytic activity towards H, of [NiFeSe]-hydrogenase
and its faster reactivation.

With flux analysis using transition path theory (TPT), we can calculate the net flux of O, from the exterior
of the protein to the active site. From this overall analysis we determined the flux of O, to the active site of
both hydrogenases, and the values are 5.28 x 107 and 1.20 x 107° for the [NiFe]-hydrogenase and the [NiFeSe]-
hydrogenase, respectively. With this we put a number on the visual analysis present in Fig. 3, clearly showing
the higher capacity of [NiFe]-hydrogenase to permeate O,, when compared with the [NiFeSe]-hydrogenase. As
said above, this correlates well with the lower O, sensitivity of [NiFeSe]-hydrogenase.

There are a number of pathways contributing to the overall flux towards the active site of both hydrogenases.
These are displayed in Fig. 4 and quantified on Table 1, where the final energy basins are identified. We decided
to highlight sets of pathways instead of individual ones, since these appear in interconnected clusters. Note also
that the sum of the fluxes of the pathways on each enzyme does not correspond to the complete flux calculated,
since these pathways can, sometimes, use parts of the other pathways, having common sub pathways among
them. Figure 4 shows the paths on the whole protein with inset highlights of the active site zone. We selected the
reactive pathways with a flux higher than 50% of the highest flux (from basin to basin) for each hydrogenase.
Each pathway comprises product basins apparently sharing the same reactive network. Table 1 describes the net
flux values and the pathway selection.

Several entrance pathways were found in both hydrogenases, suggesting the presence of multiple entry points
on the protein surface. The reactive pathways are remarkably different, converging to different points near the
centres, suggesting multiple inactivation mechanisms and kinetics for each. The existence of multiple path-
ways for O, permeation have been evidenced before by previous modelling** and combined experimental and
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Figure 3. (A-C) [NiFe]-hydrogenase; (D-F) -[NiFeSe]-hydrogenase; (A,D) ILS isosurfaces—energy cut-offs
of—1,—-5,—10 kJ/mol from lighter to darker grey. (B,E) overview of the pathway tessellation—minima are
represented by spheres and the pathways by cartoon traces. Pathway energy is inversely proportional to the
thickness. Both are colour coded from lower (- 16 kJ/mo") to higher (2 kJ/mol) energy—blue, yellow, green,
orange, red) respectively. (C,F) The selenocysteine and corresponding cysteine are evidenced by the dotted
black circle. The conformations of the proteins were selected from frames within the equilibrate part of a single
trajectory for each enzyme.
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Figure 4. Main fluxes found by reactive flux analysis of the ILS pathways targeting basins near the active centre.
The net flux is represented by the yellow trace (thickness proportional to the normalized flux—non comparable
between different paths); target basins are represented by the orange spheres. Pathways were denominated as:
(A) NF-A; (B) NF-B; (C) NF-C; (D) NFS-A; (E) NFS-B; (F) NFS-C. Slight different orientations of the two
hydrogenases were chosen to optimise the visualisation of the pathways and residues.

modelling® works on related [NiFe]-hydrogenases, and seems to be a characteristic of these systems, as further
evidenced by the results we present here on Fig. 4 and Table 1.

Opverall, this analysis provides evidence for a main pathway towards the active centre in the [NiFe]-hydroge-
nase (NF-A), which has dominant flux values, contrasting with the several representative pathways in the case of
the [NiFeSe]-hydrogenase. Nevertheless, NFS-B is dominant in [NiFeSe]-hydrogenase. The values of the fluxes
are considerably higher for most of the [NiFe]-hydrogenase target basins, when compared with the [NiFeSe]
enzyme, which correlates well with the higher value of the total flux found for the former.

Path NF-A of [NiFe]-hydrogenase comprises three target basins sharing the same network. The pathway
converges directly to the Ni coordinating Cys 530L, which is replaced by a Sec in [NiFeSe]-hydrogenases. Inter-
estingly, oxidation of this cysteine has been experimentally found in a related [NiFe]-hydrogenase from Desul-
fovibrio vulgaris Miyazaki'>*. This pathway has no representation in the [NiFeSe]-hydrogenase and accounts
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Enzyme Pathway designation | Product basin | Flux % of sum
[NiFe] NF-A NFA-1 4.06x10° | 36.03
NFA-2 3.09%x107° 27.37
NFA-3 2.64x107° | 23.36
NEF-B NFB-1 2.11x10°° 1.87
NFB-2 1.10x10°° 9.76
NEF-C NEFC-1 1.82x10°¢ 1.61
[NiFeSe] NES-A NFSA-1 2.71x107° | 17.97
NFSA-2 1.80x107¢ | 11.98
NFSA-3 1.88x10°¢ | 12.51
NFS-B NESB-1 6.95x107¢ | 46.12
NFS-C NFSC-1 1.72x107° 11.41

Table 1. Grouping of reactive pathways per product basin and respective nomenclature. Percentages were
calculated from the sum of all the fluxes for each enzyme. Note that percentages (% of sum) cannot be
compared between different enzymes, since these are calculated using the data of each enzyme.

for a large part of the flux, suggesting that it may be the one of the main inactivation spots in [NiFe] enzymes
of this group. The presence of selenium in the [NiFeSe]-hydrogenase may also influence inactivation, as it was
suggested in previous research?.

As for the NF-B pathway of [NiFe]-hydrogenase, its target basins are located near the Fe ion of [NiFe]-
hydrogenase, and have similarly located and contiguous basins in the [NiFeSe]-hydrogenase (path NFS-B),
suggesting that these two pathways are conserved among the two hydrogenases. Both pathways actually converge
in the direction to the hydroxo bridge between the Ni and Fe ions, which is present in the crystal structure of D.
gigas (but not in the state simulated here—Ni-SI, state). Therefore NF-B and NFS-B basins may be reflecting an
inactivation path for O,, with end positions (but not the whole path) conserved between the two hydrogenases.

NE-C from [NiFe]-hydrogenase converges to a zone somewhat near the active centre metal coordinating
residues Cys 65L and Cys 68L, and has a very low flux. This pathway has correspondence with the NFS-C of the
[NiFeSe]-hydrogenase pathway, albeit with a relatively distant convergence spot near Cys 492L.

Similarly to NF-A, pathway NFS-A is also comprised of three product basins, with their respective reactive
networks, and converges to an intermediate location between the proximal FeS centre and the active centre in
the [NiFeSe]-hydrogenase near Cys 75L, which was already found to be oxidated*. This is supported by previous
works where [NiFeSe] hydrogenases have displayed sulfinate formation at the non-selenocysteines and oxygena-
tion of the proximal [4Fe4S] cluster'>%.

These findings suggest that the preferred pathways for O, differ in both enzymes, possibly determining the
inactivation mechanism, as the active site of the [NiFeSe]-hydrogenases is less exposed to O,. These differences
might be related with specific aminoacid residue changes between the two enzymes; for instance while NF-B in
[NiFe]-hydrogenase and NFS-B in [NiFeSe]-hydrogenase converge to the same place in between the two metals,
NES-B is confurcated (resulting from convergence of two convergent pathways), while NF-B is not. The explana-
tion for this may be rather complex, but we notice one residue difference related with this confurcation; Asp107L
in [NiFe]-hydrogenase (highly conserved in this group), which is replaced by Ser117L in [NiFeSe]-hydrogenase.

The fact that neither basins nor pathways are present near the selenocysteine (as opposed to the same space
of the [NiFe] Cys 530L) suggests that the Sec or the surrounding environment may also have a role in the protec-
tion of the [NiFeSe] hydrogenase’s centre.

To illustrate the differences on the hydrogenase’s O, pathways, we identify all residues at a van der Waals
distance of the highest fluxes (higher than one half of the maximum flux the pathway) and mapped them on
Fig. 5. The corresponding residue of the other hydrogenase was also selected by aligning the two structures
to check for conservation between both hydrogenases (Supplementary material—tables S3-S4, third column).

Figure 5 shows the intricate networks of residues that line the O, permeation pathways and the results
contained in tables S3 and S4 (Supplementary material) evidence different degrees of conservation of these
residues (note that some residues line more than one pathway). This conservation can be first analysed among
the two hydrogenases studied here (third column in tables $3-S4), and secondly among the homologues of each
hydrogenase, using the ConSurf server®® (forth column in tables S3-S4). ConSurf provides a measure of sequence
conservation within a protein family, using close homologue sequences as a proxy for this protein family.

We established before that, in general, the O, permeation pathways are not the same among the two hydro-
genases. However, to different degrees, some of the residues comprising these pathways are the same in the
two enzymes. Additionally, these same residues are, in many cases, conserved (but with notable exceptions)
within the particular family of a given hydrogenase (we use the ConSurf Color Score as a proxy for the family).
Therefore, it is not very likely that these conserved residues can constitute, in isolation, the basis for the different
permeation characteristics of the two hydrogenases. On the other hand, the residues that are different among the
two hydrogenases, but are conserved in the family of hydrogenases containing a given pathway, are much more
interesting to highlight. Analysing residues in the [NiFe]-hydrogenase with a ConSurf Color Score of 9 (cor-
responding to maximum conservation), we identify Thr 69L and Asp 107L in NF-B and Thr 69L and Val 484L
in NF-C. Using the same criteria and looking at the [NiFeSe]-hydrogenase, we can identify Ile 74L, Pro 79L and
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Figure 5. Representation of the residue conservation near the O, pathways. The residues at van der Waals
distance (considering the Se:O, distance) from the pathways are selected. Pathways are arranged in the same
orientation as Fig. 3, and non-conserved residues are coloured with magenta carbons, while conserved ones are
coloured cyan. Slightly different orientations of the two hydrogenases were chosen to optimise the visualisation
of the pathways and residues.
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Gly 491L in NFS-A, Asn 113L, Gln 116L, Ser 117L, Leu 120L and Arg 169L in NFS-B, Ile 74L in NFS-C. These are
all residues that may be interesting to look in further computational and experimental mutation studies, which
may unravel ways that nature used to evolve different O, permeation features. Actually, in a recent study done
in the [NiFeSe]-hydrogenase, one of the residues of NFS-A pathway identified above—Gly 491L—was success-
fully experimentally mutated by a bulkier alanine residue (the direct [NiFe] counterpart—see table S4) and by
a serine residue, leading to decreased O, inhibition, while not affecting H, production, in comparison with the
wildtype®. This inhibition pathway does not exist in the [NiFe]-hydrogenase, which, according to our results, is
mainly inhibited by the NF-A and NF-B paths. Placing a bulkier residue in this position on [NiFeSe]-hydrogenase
may eliminate or reduce the NFS-A path, thereby reducing inhibition by O, even further. Another indication
that the space occupied by residues within the channels is, in fact, an important factor in the O, inhibition, is
the experimental replacement of the active site bulkier selenocysteine residue by a less bulkier cysteine residue
in the [NiFeSe]-hydrogenase, which leads to a similar inactivation profile by O, and inactive states similar to
[NiFe]-enzymes?®.

Conclusions

Using two different approaches, the pathways of O, permeation were comprehensively mapped in two different
[NiFe] class hydrogenases structures displaying different O, sensitivities. The methods used here consider, not
only the structure, but the dynamic behaviour of the protein structures, allowing for a more realistic analysis
that can deal with transient pathways for O, access. ILS in particular allows for a thermodynamic quantification
of the O, affinity on the whole protein matrix, which, together with further analysis, allows for predicting the
fluxes of O, from the exterior towards the active site of the enzymes.

We found marked differences in the diffusion patterns of both enzymes, being the [NiFe]-hydrogenase more
prone for O, access and potential inactivation, when compared with the [NiFeSe]-hydrogenase. Additionally,
there is evidence for different mechanisms for O, inactivation of each enzyme, which may help explain the dif-
ferent performances of both in aerobic settings. The pathways for inactivation were also mapped in an atomistic
level, which may help understand the structural properties of the focal points of oxygen diffusion. This knowledge
may prove useful in future manipulation towards the development of more efficient hydrogen catalysts that are
less inhibit by O,.

Methods

System setup. The X-ray structures of [NiFe] (D. gigas PDB ID 3frv)** and [NiFeSe] (D. vulgaris PDB ID
2wpn)** hydrogenases were used in this study. Each system was solvated in a rhombic dodecahedral water box
using SPC water*’. A minimum distance of 8 A between the protein and box walls was imposed. Each system was
neutralized with Na* ions to counter act its negative charge. Protonation states were determined through a com-
bination of PB/MC calculations/simulations using MEAD version 2.2.9 and PETIT version 1.6.0 respectively***!
at pH 7.0. These predicted that all lysine and arginine residues were positively charged, while glutamate and
aspartate residues were considered negatively charged (but see details on supplementary material for an excep-
tion). Details on the Histidine protonation can be found in the supplementary material (Tables S1 and S2).

As for the O, molecule parameters, the model from Cordeiro*?, which was parameterised to account for the
solvation properties of molecular oxygen, both in aqueous as well as non-aqueous environments, was used in this
work. As for the oxidation states we considered the Ni-SI, state*® for the active [NiFe] centres and the oxidized
state for the [4Fe4S] clusters. All the centres are considered to be flexible. More details on the parametrization of
the metallic centres can be found in Baltazar et al.”” and Teixeira et al.** for [NiFeSe]-hydrogenase and [NiFe]-
hydrogenase, respectively.

Molecular dynamics simulations. The GROMOS 54A7* forcefield and single point charge (SPC) water
model* were used to describe the systems, and GROMACS version 5.0.7*° was used to perform all MD simula-
tions. Five 100 ns long simulations in solvent were performed for each system. These simulations were carried
out with a constant number of particles, pressure (1 atm—controlled using a semi-isotropic Parrinello-Rahman
barostat**”), temperature (300 K—controlled by a V-rescale thermostat**) and periodic boundary conditions.
Different temperature couplings were applied to protein and solvent + O, atoms using a coupling constant of
0.1 ps. A pressure coupling constant of 1.6 ps was used. All solute bond lengths were constrained with the
P-LINCS algorithm*® while the SETTLE algorithm® was used for solvent. Equations of motion were integrated
with a time-step of 2 fs, with neighbour lists being updated every 40 steps. Electrostatic interactions were treated
with the Particle mesh Ewald method® with a real space cut-off at 10 A and a Fourier grid spacing of 1.2 A. The
Verlet cut-off scheme was selected.

To remove unfavourable atomic contacts, the systems were energy minimized without positional restraints
using a combination of steepest descent and Low memory Broyden-Fletcher-Goldfarb-Shanno algorithms®.
System initialization comprises four 50 ps MD steps with velocities being generated from a Boltzmann distribu-
tion at the defined temperature. At the first step, in the NVT ensemble, the Berendsen thermostat®® was utilized
with positional restrains on the C-alpha atoms with force constant of 10,000 kJ/mol A2 Pressure coupling using
the Berendsen barostat® was added in the subsequent step with a coupling constant of 3 ps. In the following
step all parameters were kept, but the coupling constant was decreased to 2 ps. In the final step all restraints were
removed, the pressure coupling constant was reduced to 1.6 ps, with the barostat being altered to Parrinello-Rah-
man and the thermostat to V-rescale.

A protocol was prepared to study O, diffusion assuring system stability, conformational variety and statistical
accuracy. From the solvent only simulations a snapshot of each replicate was retrieved at the 30 ns mark (assur-
ing system stability). 100 water molecules were randomly selected from the outside of the protein structure and
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substituted by O, molecules. The velocities from the removed water oxygen and one of hydrogen atoms were
kept and assigned to the inserted O,. The remaining hydrogen atom and its velocity were discarded. 1 ns of
equilibration with a smaller timestep (1 fs) was calculated so as the newly introduced molecules stabilize with the
solvent (avoiding clashes). The simulations with O, were kept for a further 70 ns amounting to a total of 350 ns
of simulation with explicit O, per system.

MD-0, distribution analysis. The VMD volmap plugin® was utilized calculate probability density func-
tions (PDF’s) of the O, distribution along the MD trajectories with explicit O,. A total of 175,000 frames per
enzyme, corresponding to the final 35 ns of each trajectory (of the five 70 ns trajectories per enzyme) were used
for this calculation, with a grid resolution of 1 A. We calculated the internalization of O, using a previously
implemented and described method®. Maps were visualized and images rendered using Pymol (The PyMOL
Molecular Graphics System, Version 1.8, Schrodinger, LLC) and VMD*,

Implicit ligand sampling. The implicit ligand sampling® (ILS) method was used to calculate the free
energy of transferring O, from pure water to anywhere inside both hydrogenases and surrounding environment.
This method allows for studying the whole landscape of molecular oxygen placement, even regions such as the
deep lying hydrogenase active site, where explicit molecules of O, have difficulties in reaching within the time
scale of the simulation. This methodology uses molecular dynamics simulations of the system without molecular
oxygen, in contrast with the previously described simulations.

From the ILS method the potential mean force (PMF(r)) of having a diatomic ligand at a position r is given
by:

e~ kD)™ 1AE(r Gy

PMF(r) = —k; T ln Z Z (1)

m=1 k=1

where M is the number of utilized protein-solvent configurations, C is the number of random orientations of
the ligand and AE(r, q,,,, k) is the protein-solvent interaction energy in the configuration g, with the dia-
tomic ligand located at r with an orientation Q. Non-bonded interactions (electrostatic and van der Waals) are
accounted by AE(r, q,,,, 2). In the O, model used*, given that it has no partial charges, only van der Waals
interactions were considered. For performing these calculations, a modified version®® of the GROMACS 4.5.4
Widom TPI algorithm was used to perform ILS*. The last 10 ns of the five MD trajectories in water were used
(accounting in total for ~ 25,000 configurations for each enzyme), with the configurations being fitted to the
C-alpha atoms of the energy minimized structure. Grids of 58 x 62 x 61 A and 62 x 62 x 63 A dimensions wad
used in the calculations for the [NiFe] and [NiFeSe] structures, respectively. For each grid point, 400 insertions
in random positions and orientations (C in Eq. 1) per grid cube were made. The results of all calculations were
averaged for each system resulting in two discretized scalar fields (3D energy landscapes). These landscapes detail
the Gibbs free energy of moving O, from vacuum to a given position of the system, AGyac— pror(O2). . Finally, as
our interest is to study a landscape of the Gibbs-free energy of moving O, from a position in water to a position
in the system, AGyat—s prot (O2), we made additional simulations to calculate the free energy of moving O, from
the vacuum to water, AGygc—war (O2) a subtracting it to every grid point of AGyac—s prot (O2).

To calculate AGyge—s wat (O2) we adopted a method?, which takes 10 ns pure water simulations in the NPT
ensemble and applies the ILS method to the final 2000 conformations (2 ns). The resulting 3D landscape of this
calculation was then averaged over all the grid points resulting in the final AGygc— wat (O2). The calculated value
was of 8.30 kJ/mol for the O, model*? used.

ILS: free energy landscape analysis. ILS details extensively the free energy landscape of both enzymes.
Using that information, it is possible to infer low energy pathways of O, inside the structures. To achieve this, a
previously implemented method® extending on another previous approach® was adopted. This method starts
by linking each grid point to the neighbour grid point of lowest energy (neighbours are defined as the adjacent
26 grid points forming a 3 x 3 x 3 cube around it) until a local minimum is found. All grid points ‘falling’ to the
same minima are grouped into sets and classified as basins. After the classification, the algorithm identifies the
lowest energy points within the boundaries between each pair of neighbouring basins—the saddle points. A
network of paths between all energy minima of the landscape can then be constructed using the steepest-descent
paths from the saddle points to the minima.

O, diffusion kinetics modelling. ILS provides an exhaustive sampling over the energy landscape of the
whole system (including high-energy regions) representing a suitable model for a kinetic analysis. In addition,
classifying the energy landscape into basins provides a division of the landscape into macrostates. Consider-
ing these basins as belonging to the state space of O, diffusion inside the two hydrogenases a Markov process
describing the time-discrete evolution of the system in the state space can be constructed. The construction
of the representative model relies on calculating a tition probability matrix where each element Tj;(At) cor-
responds to the probability of transition to basin/state j after a time At. when being in a basin i. at an arbitrary
time. As ILS does not provide statistics of these dynamics in the state space the matrix was inferred from the
energy landscape using Metropolis sampling for the jumps between neighbour grid points. Following Kramer’s
assumption (assuming the grid-point probability distribution within any state i at time . can be approximated
by the steady state of state i) the transition probability from two different states (i, j) can be calculated using the
following method>”:
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1 [ pEG) -
Tij(At) = 72,-(3@ ) xze; yze:j min {e PEE) ¢ ﬂE()’)} o

y~x

where Z; is the partition function of state i given by >_. . e #£®), D is number of dimensions of the landscape,
x and y are the neighbour grid points (denoted as y ~ x) that belong to the border of different states, 8 = 1/k;, T
representing kj, as the Boltzmann constant and T the absolute temperature of the system and finally E(x) repre-
senting the energy at the grid point x.

The self-transition probabilities Tj; (At) were calculated as 1 — Zi#j Tjj(At). Using this method, a Markov
model was constructed for each ILS 3D energy landscape for all transitions with a cut-off for saddle pair energy
of <40 kJ mol™. Therefore, this model excludes very low probability transitions and very hard to reach states. As
the solvent states were not crucial in the model building, they were coarse grained into a single state. Denoting
the probability of a state i at a time ¢ as p;(t), the time discrete evolution for the Markov chain can be inferred by:

pit+ A1) =Y pi)T;(AD) 3)

Iterating this Markov chain for t — oo gives t equilibrium of the stationary probability distribution
7; = pi(00), obeying to the invariance relation 77; = X;m; T;;(At). The iteration process from any starting prob-
ability distribution, p;(0) # m;, corresponds to a relaxation process toward 7;, where Tj;(At) is calculated from
the above method (see Eq. 2). As the border is the same for any given states pair ij the detailed balance relation
7;Tij(At) = m;T;;(At) is also verified. The iteration of the Markov chain (Eq. 3) utilized a probability distribu-
tion of

1 i = solvent

pi0) = {O i # solvent )

Flux analysis: transition path theory. We applied transition path theory™® to the resultant Markov
model in order to characterize the transition pathways and calculate reactive fluxes between the solvent state
and the product state. Our approach is based on finding the subsets in the whole ensemble of transitions, which
we can consider trajectories of molecular oxygen, leaving the solvent state (reagent) and continue until reaching
the catalytic [NiFe] and [NiFeSe] centres (product states), and consider them reactive trajectories. As we cannot
still pinpoint the exact place of the inactivation inside of both hydrogenases, all basins in contact (we considered
the Selenium-oxygen van der Waals radius as the contact distance) with the most distant atom of the cysteines
connected to the Nickel-Iron centre were considered product states and trajectories leading to those basins were
considered reactive trajectories.

Using TPT the reactive trajectories were statistically characterized using committors (forward and backward).
In our case the forward committor is defined as the probability that a process will reach first the product state
than the solvent state, being the backwards committor the inverse. TPT also allows for the calculation of the
effective flux, the net average number of reactive trajectories per time unit that transition from state i to state j
while converging to the product states. Each basin was considered as a state and the pathways reactive trajecto-
ries. These calculations were performed using the PyEmma software®. Details on the use of this methodology
to a similar system can be found in Damas et al. work®. Let us clarify that the effective flux aims at measuring
the flux of hypothetical molecular oxygen trajectories per time unit going towards the active site. Therefore, this
is a measure of the permeation of molecular oxygen towards the active site. As stated above, the flux measures
trajectories per unit of time, but, contrary to other applications, the unit of time is here undefined, since we
estimated the transition probabilities of the Markov model from an energy landscape (Eq. 2 above) and not from
actual MD trajectories of molecular oxygen, where we could define a At in the time scale of the simulations to
estimate transition probabilities (T;;(At)). Having said this, being At an undefined time, it is the same time for
all processes studied here, which are based on the same potential energy function and the same methodology to
estimate transition probabilities. Therefore, the fluxes can be compared between each other and between enzymes.
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