36 research outputs found

    Defining marine important bird areas: Testing the foraging radius approach

    Get PDF
    International audienceRecent international initiatives have promoted a number of different approaches to identify marine Important Bird and biodiversity Areas (IBAs), which are important areas for foraging, migrating or over-wintering seabirds. The ‘Foraging Radius Approach’ is one of these and uses known foraging range and habitat preferences to predict the size and location of foraging areas around breeding colonies. Here we assess the performance of the Foraging Radius Approach using GPS tracking data from six seabird species with a variety of foraging modes. For each species we compared the population home-range areas of our six study species with the home-range areas defined using the Foraging Radius Approach. We also assessed whether basic information on depth preferences from tracking data could improve these home-range area estimates. Foraging Radius Approach home-range areas based on maximum foraging radii encompassed the entire population home-range of five out of six of our study species but overestimated the size of the population home-range area in every case. The mean maximum foraging radius overestimated the population home-range areas by a factor of 4–14 for five of the six species whilst the mean foraging radius overestimated the population home-range area for half of the species and underestimated for the rest. In the absence of other data, the Foraging Radius Approach appears to provide a reasonable basis for preliminary marine IBA identification. We suggest that using the mean value of all previously reported maximum foraging radii, informed by basic depth preferences provides the most appropriate prediction, balancing the needs of seabirds with efficient use of marine space

    Testing for hybridisation of the Critically Endangered Iguana delicatissima on Anguilla to inform conservation efforts

    Get PDF
    The Caribbean Island of Anguilla in the north-eastern Lesser Antilles is home to one of the last populations of the Critically Endangered Lesser Antillean iguana Iguana delicatissima. This population is highly threatened primarily because of hybridisation with non-native Iguana iguana. This study assesses the degree of hybridisation between Anguilla’s Iguana species firstly using morphological characteristics and then genetic analysis to validate the genetic integrity of morphologically identified I. delicatissima. We also examined the genetic diversity of Anguilla’s I. delicatissima population, and that of a population on the nearby island of Îlet Fourchue, St Barthélemy. Forty-five iguanas were captured in Anguilla and 10 in St Barthélemy, and sequences from 3 nuclear and 1 mtDNA genes were obtained for each. Of the 45 iguanas captured in Anguilla, 22 were morphologically identified as I. delicatissima, 12 as I. iguana and the remainder were identified as hybrids. Morphological assignments were all confirmed by genetic analyses except for one I. iguana and one hybrid individual. These two individuals appeared likely to have originated following ancestral hybridisation events several generations ago. A significant paucity of genetic diversity was found within Anguillan and St Barthélemy I. delicatissima populations, with a single haplotype being identified for each of the three nuclear genes and the mtDNA sequence. This study highlights the urgency for immediate action to conserve Anguilla’s remnant I. delicatissima population. Protection from hybridisation will require translocation to I. iguana-free offshore cays, with supplementary individuals being sourced from neighbouring islands to enhance the genetic diversity of the population

    Genomic and Proteomic Analyses of the Fungus Arthrobotrys oligospora Provide Insights into Nematode-Trap Formation

    Get PDF
    Nematode-trapping fungi are “carnivorous” and attack their hosts using specialized trapping devices. The morphological development of these traps is the key indicator of their switch from saprophytic to predacious lifestyles. Here, the genome of the nematode-trapping fungus Arthrobotrys oligospora Fres. (ATCC24927) was reported. The genome contains 40.07 Mb assembled sequence with 11,479 predicted genes. Comparative analysis showed that A. oligospora shared many more genes with pathogenic fungi than with non-pathogenic fungi. Specifically, compared to several sequenced ascomycete fungi, the A. oligospora genome has a larger number of pathogenicity-related genes in the subtilisin, cellulase, cellobiohydrolase, and pectinesterase gene families. Searching against the pathogen-host interaction gene database identified 398 homologous genes involved in pathogenicity in other fungi. The analysis of repetitive sequences provided evidence for repeat-induced point mutations in A. oligospora. Proteomic and quantitative PCR (qPCR) analyses revealed that 90 genes were significantly up-regulated at the early stage of trap-formation by nematode extracts and most of these genes were involved in translation, amino acid metabolism, carbohydrate metabolism, cell wall and membrane biogenesis. Based on the combined genomic, proteomic and qPCR data, a model for the formation of nematode trapping device in this fungus was proposed. In this model, multiple fungal signal transduction pathways are activated by its nematode prey to further regulate downstream genes associated with diverse cellular processes such as energy metabolism, biosynthesis of the cell wall and adhesive proteins, cell division, glycerol accumulation and peroxisome biogenesis. This study will facilitate the identification of pathogenicity-related genes and provide a broad foundation for understanding the molecular and evolutionary mechanisms underlying fungi-nematodes interactions

    Deconstructing Insight: EEG Correlates of Insightful Problem Solving

    Get PDF
    Background: Cognitive insight phenomenon lies at the core of numerous discoveries. Behavioral research indicates four salient features of insightful problem solving: (i) mental impasse, followed by (ii) restructuring of the problem representation, which leads to (iii) a deeper understanding of the problem, and finally culminates in (iv) an “Aha!” feeling of suddenness and obviousness of the solution. However, until now no efforts have been made to investigate the neural mechanisms of these constituent features of insight in a unified framework. Methodology/Principal Findings: In an electroencephalographic study using verbal remote associate problems, we identified neural correlates of these four features of insightful problem solving. Hints were provided for unsolved problems or after mental impasse. Subjective ratings of the restructuring process and the feeling of suddenness were obtained on trial-by-trial basis. A negative correlation was found between these two ratings indicating that sudden insightful solutions, where restructuring is a key feature, involve automatic, subconscious recombination of information. Electroencephalogram signals were analyzed in the space×time×frequency domain with a nonparametric cluster randomization test. First, we found strong gamma band responses at parieto-occipital regions which we interpreted as (i) an adjustment of selective attention (leading to a mental impasse or to a correct solution depending on the gamma band power level) and (ii) encoding and retrieval processes for the emergence of spontaneous new solutions. Secondly, we observed an increased upper alpha band response in right temporal regions (suggesting active suppression of weakly activated solution relevant information) for initially unsuccessful trials that after hint presentation led to a correct solution. Finally, for trials with high restructuring, decreased alpha power (suggesting greater cortical excitation) was observed in right prefrontal area. Conclusions/Significance: Our results provide a first account of cognitive insight by dissociating its constituent components and potential neural correlates

    Estratégias lúdicas de coleta de dados com crianças com câncer: revisão integrativa

    No full text
    As crianças são as melhores fontes de informação sobre suas experiências e opiniões; e as pesquisas qualitativas têmprivilegiado desenvolver e aplicar técnicas que deem vozes a elas e facilitem a sua aproximação com o pesquisador.Objetivou-se identificar, mediante revisão integrativa da literatura, recursos lúdicos utilizados na coleta de dadosde pesquisas qualitativas com crianças com câncer e suas formas de aplicação. Realizaram-se buscas sistematizadasem bases de dados eletrônicas e biblioteca virtual, que, somadas a uma amostra não sistematizada, abrangendo operíodo de 2000 a 2010, totalizaram 15 estudos. Identificaram-se os recursos de desenho, brinquedo terapêutico, fantoche, fotografia e dinâmicas de criatividade e sensibilidade que, associados ou não à entrevista, mostraram-se facilitadores da coleta de dados, direta ou indiretamente, ampliando a interação com as crianças e permitindo maior expressão de seus sentimentos. São apresentadas vantagens e limitações da utilização desses recursos, contribuindo-se para o planejamento de pesquisas com crianças
    corecore