63 research outputs found

    Laboratory Surveillance of Rabies in Humans, Domestic Animals, and Bats in Madagascar from 2005 to 2010

    Get PDF
    Background. Rabies virus (RABV) has circulated in Madagascar at least since the 19th century. Objectives. To assess the circulation of lyssavirus in the island from 2005 to 2010. Materials and Methods. Animal (including bats) and human samples were tested for RABV and other lyssavirus using antigen, ribonucleic acid (RNA), and antibodies detection and virus isolation. Results. Half of the 437 domestic or tame wild terrestrial mammal brains tested were found RABV antigen positive, including 54% of the 341 dogs tested. This percentage ranged from 26% to 75% across the period. Nine of the 10 suspected human cases tested were laboratory confirmed. RABV circulation was confirmed in 34 of the 38 districts sampled. No lyssavirus RNA was detected in 1983 bats specimens. Nevertheless, antibodies against Lagos bat virus were detected in the sera of 12 among 50 Eidolon dupreanum specimens sampled. Conclusion. More than a century after the introduction of the vaccine, rabies still remains endemic in Madagascar

    Geographical distribution and relative risk of Anjozorobe virus (Thailand orthohantavirus) infection in black rats (Rattus rattus) in Madagascar

    Get PDF
    Acknowledgements We thank those who facilitated the survey: householders, heads of fokontany, local administration and health authorities from Ministry of Health. We would like to express our gratitude to the staff of the Plague Central Laboratory Unit, Institut Pasteur de Madagascar: Dr. Minoarisoa Rajerison who facilitated this study; Corinne Rahaingosoamamitiana and Soanandrasana Rahelinirina for helping to conduct and organize the field work. We would also like to thank Dr. Fanjasoa Rakotomanana and Dr. Lalaina Arivony Nomenjanahary assistance in the field trips and technical and field support. Funding This work was supported by the Institut Pasteur de Madagascar (Internal Project through ZORA: Zoonoses, Rodent and Arboviruses) and Wellcome Trust Fellowships to ST (#081705, #095171). VR was also supported though Girard’s fellowship undergraduate program from the Institut Pasteur de Madagascar. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Challenges in evaluating risks and policy options around endemic establishment or elimination of novel pathogens.

    Get PDF
    When a novel pathogen emerges there may be opportunities to eliminate transmission - locally or globally - whilst case numbers are low. However, the effort required to push a disease to elimination may come at a vast cost at a time when uncertainty is high. Models currently inform policy discussions on this question, but there are a number of open challenges, particularly given unknown aspects of the pathogen biology, the effectiveness and feasibility of interventions, and the intersecting political, economic, sociological and behavioural complexities for a novel pathogen. In this overview, we detail how models might identify directions for better leveraging or expanding the scope of data available on the pathogen trajectory, for bounding the theoretical context of emergence relative to prospects for elimination, and for framing the larger economic, behavioural and social context that will influence policy decisions and the pathogen's outcome

    How geographic access to care shapes disease burden: the current impact of post-exposure prophylaxis and potential for expanded access to prevent human rabies deaths in Madagascar

    Get PDF
    Background: Post-exposure prophylaxis (PEP) is highly effective at preventing human rabies deaths, however access to PEP is limited in many rabies endemic countries. The 2018 decision by Gavi to add human rabies vaccine to its investment portfolio should expand PEP availability and reduce rabies deaths. We explore how geographic access to PEP impacts the rabies burden in Madagascar and the potential benefits of improved provisioning. Methodology & principal findings: We use spatially resolved data on numbers of bite patients seeking PEP across Madagascar and estimates of travel times to the closest clinic providing PEP (N = 31) in a Bayesian regression framework to estimate how geographic access predicts reported bite incidence. We find that travel times strongly predict reported bite incidence across the country. Using resulting estimates in an adapted decision tree, we extrapolate rabies deaths and reporting and find that geographic access to PEP shapes burden sub-nationally. We estimate 960 human rabies deaths annually (95% Prediction Intervals (PI): 790–1120), with PEP averting an additional 800 deaths (95% PI: 640–970) each year. Under these assumptions, we find that expanding PEP to one clinic per district (83 additional clinics) could reduce deaths by 19%, but even with all major primary clinics provisioning PEP (1733 additional clinics), we still expect substantial rabies mortality. Our quantitative estimates are most sensitive to assumptions of underlying rabies exposure incidence, but qualitative patterns of the impacts of travel times and expanded PEP access are robust. Conclusions & significance: PEP is effective at preventing rabies deaths, and in the absence of strong surveillance, targeting underserved populations may be the most equitable way to provision PEP. Given the potential for countries to use Gavi funding to expand access to PEP in the coming years, this framework could be used as a first step to guide expansion and improve targeting of interventions in similar endemic settings where PEP access is geographically restricted and baseline data on rabies risk is lacking. While better PEP access should save many lives, improved outreach, surveillance, and dog vaccination will be necessary, and if rolled out with Gavi investment, could catalyze progress towards achieving zero rabies deaths

    Rabies surveillance in Madagascar from 2011 to 2021: can we reach the target?

    Get PDF
    Rabies is endemic in Madagascar and a neglected disease. The aim of this study was to summarize human and animal rabies surveillance activities in Madagascar from 2011 to 2021. Samples from terrestrial mammals and humans were tested for rabies virus infection using direct fluorescent antibody, RT-PCR and virus isolation by the National Reference Laboratory (NRL) for rabies at the Institut Pasteur de Madagascar. Among 964 animal and 47 human samples tested, 66.7 and 70.2% were positive, respectively. The NRL received these suspect rabies samples from 48 of 114 districts of Madagascar. Most of them were submitted from the district of the capital city Antananarivo (26.3%) and mainly from its region Analamanga (68.9%). Animal samples were mainly from dogs (83%), cats (9.5%) and cattle (5.8%). Pigs, lemurs, goats accounted for less than 1%. During the 11 years of surveillance, 48 human skin and/or brain biopsy samples were received from 20 districts, mainly from Antananarivo and its surroundings (N = 13), Toamasina and its surroundings (N = 8) and Moramanga (N = 6). The high positivity rate for all species and the non-homogeneous spatial distribution of samples suggests substantial underreporting of rabies cases. There is a clear need to better understand the reasons for underreporting and prioritize rabies surveillance, prevention and control in Madagascar, with improvements in budget, education and infrastructure. A joint animal and human health rabies control program including vaccination of at least 70% of the dog population, is needed to achieve the goal of eliminating dog-transmitted human rabies by 2030 from Madagascar

    The potential effect of improved provision of rabies post-exposure prophylaxis in Gavi-eligible countries: a modelling study

    Get PDF
    Background: Tens of thousands of people die from dog-mediated rabies annually. Deaths can be prevented through post-exposure prophylaxis for people who have been bitten, and the disease eliminated through dog vaccination. Current post-exposure prophylaxis use saves many lives, but availability remains poor in many rabies-endemic countries due to high costs, poor access, and supply. Methods: We developed epidemiological and economic models to investigate the effect of an investment in post-exposure prophylaxis by Gavi, the Vaccine Alliance. We modelled post-exposure prophylaxis use according to the status quo, with improved access using WHO-recommended intradermal vaccination, with and without rabies immunoglobulin, and with and without dog vaccination. We took the health provider perspective, including only direct costs. Findings: We predict more than 1 million deaths will occur in the 67 rabies-endemic countries considered from 2020 to 2035, under the status quo. Current post-exposure prophylaxis use prevents approximately 56 000 deaths annually. Expanded access to, and free provision of, post-exposure prophylaxis would prevent an additional 489 000 deaths between 2020 and 2035. Under this switch to efficient intradermal post-exposure prophylaxis regimens, total projected vaccine needs remain similar (about 73 million vials) yet 17·4 million more people are vaccinated, making this an extremely cost-effective method, with costs of US635perdeathavertedand635 per death averted and 33 per disability-adjusted life-years averted. Scaling up dog vaccination programmes could eliminate dog-mediated rabies over this time period; improved post-exposure prophylaxis access remains cost-effective under this scenario, especially in combination with patient risk assessments to reduce unnecessary post-exposure prophylaxis use. Interpretation: Investing in post-exposure vaccines would be an extremely cost-effective intervention that could substantially reduce disease burden and catalyse dog vaccination efforts to eliminate dog-mediated rabies. Funding: World Health Organization

    Gradual emergence followed by exponential spread of the SARS-CoV-2 Omicron variant in Africa.

    Get PDF
    The geographic and evolutionary origins of the SARS-CoV-2 Omicron variant (BA.1), which was first detected mid-November 2021 in Southern Africa, remain unknown. We tested 13,097 COVID-19 patients sampled between mid-2021 to early 2022 from 22 African countries for BA.1 by real-time RT-PCR. By November-December 2021, BA.1 had replaced the Delta variant in all African sub-regions following a South-North gradient, with a peak Rt of 4.1. Polymerase chain reaction and near-full genome sequencing data revealed genetically diverse Omicron ancestors already existed across Africa by August 2021. Mutations, altering viral tropism, replication and immune escape, gradually accumulated in the spike gene. Omicron ancestors were therefore present in several African countries months before Omicron dominated transmission. These data also indicate that travel bans are ineffective in the face of undetected and widespread infection
    • 

    corecore