14,648 research outputs found

    Chromium silicide formation by ion mixing

    Get PDF
    The formation of CrSi_2 by ion mixing was studied as a function of temperature, silicide thickness and irradiated interface. Samples were prepared by annealing evaporated couples of Cr on Si and Si on Cr at 450°C for short times to form Si/CrSi_2/Cr sandwiches. Xenon beams with energies up to 300 keV and fluences up to 8 X 10^15 cm^(-2) were used for mixing at temperatures between 20 and 300°C. Penetrating only the Cr/CrSi_2 interface at temperatures above 150°C induces further growth of the silicide as a uniform stoichiometric layer. The growth rate does not depend on the thickness of the initially formed silicide at least up to a thickness of 150 nm. The amount of growth depends linearly on the density of energy deposited at the interface. The growth is temperature dependent with an apparent activation energy of 0.2 eV. Irradiating only through the Si/CrSi_2 interface does not induce silicide growth. We conclude that the formation of CrSi_2 by ion beam mixing is an interface-limited process and that the limiting reaction occurs at the Cr/CrSi_2 interface

    Reactively sputtered RuO2 diffusion barriers

    Get PDF
    The thermal stability of reactively sputtered RuO2 films is investigated from the point of view of their application as diffusion barriers in silicon contact metallizations with an Al overlayer. Backscattering spectra of Si/RuO2/Al samples and electrical measurements on shallow junction diodes with Si/TiSi2.3/RuO2/Al contacts both show that RuO2 films are effective diffusion barriers between Al and Si for 30-min annealing at temperatures as high as 600°C

    Environmental learning using a problem-based approach in the field: A case study of a Hong Kong school

    Get PDF
    This study investigated the environmental learning of a group of senior geography students through a problem-based learning (PBL) field programme to see if the goals of education for the environment could be accomplished. In the PBL field programme, the students were given a problem statement concerning a real-life scenario of an old lady living in a remote village of Hong Kong. During the PBL field programme which also has adopted an action research framework, the students were observed to have identified the problem statement, set hypotheses, constructed the research methods and collected empirical data in an authentic environment all by themselves. This paper reports on the first cycle of this piece of action research. Data were collected both quantitatively and qualitatively via questionnaires, students' reflective journals, field observation notes and group interviews. The initial finding of this PBL field programme reveals that students had acquired more in-depth knowledge and extended their comfort zones in learning. They were able to develop and practice their critical thinking and problem-solving skills while they were working on the problem in the field. Although there was no evidence of sustained self-directed learning among the students, the PBL field programme offered them a framework for developing self-directed learning. An initial conclusion is that PBL in the field can provide a useful framework and direction for EE to accomplish the goals of education for the environment. ©. 2008 T. Kwan & M. So.published_or_final_versio

    Supersonic flow calculation using a Reynolds-stress and an eddy thermal diffusivity turbulence model

    Get PDF
    A second-order model for the velocity field and a two-equation model for the temperature field are used to calculate supersonic boundary layers assuming negligible real gas effects. The modeled equations are formulated on the basis of an incompressible assumption and then extended to supersonic flows by invoking Morkovin's hypothesis, which proposes that compressibility effects are completely accounted for by mean density variations alone. In order to calculate the near-wall flow accurately, correction functions are proposed to render the modeled equations asymptotically consistent with the behavior of the exact equations near a wall and, at the same time, display the proper dependence on the molecular Prandtl number. Thus formulated, the near-wall second order turbulence model for heat transfer is applicable to supersonic flows with different Prandtl numbers. The model is validated against flows with different Prandtl numbers and supersonic flows with free-stream Mach numbers as high as 10 and wall temperature ratios as low as 0.3. Among the flow cases considered, the momentum thickness Reynolds number varies from approximately 4,000 to approximately 21,000. Good correlation with measurements of mean velocity, temperature, and its variance is obtained. Discernible improvements in the law-of-the-wall are observed, especially in the range where the big-law applies

    A near-wall four-equation turbulence model for compressible boundary layers

    Get PDF
    A near-wall four-equation turbulence model is developed for the calculation of high-speed compressible turbulent boundary layers. The four equations used are the k-epsilon equations and the theta(exp 2)-epsilon(sub theta) equations. These equations are used to define the turbulent diffusivities for momentum and heat fluxes, thus allowing the assumption of dynamic similarity between momentum and heat transport to be relaxed. The Favre-averaged equations of motion are solved in conjunction with the four transport equations. Calculations are compared with measurements and with another model's predictions where the assumption of the constant turbulent Prandtl number is invoked. Compressible flat plate turbulent boundary layers with both adiabatic and constant temperature wall boundary conditions are considered. Results for the range of low Mach numbers and temperature ratios investigated are essentially the same as those obtained using an identical near-wall k-epsilon model. In general, the numerical predictions are in very good agreement with measurements and there are significant improvements in the predictions of mean flow properties at high Mach numbers

    WxN1–x alloys as diffusion barriers between Al and Si

    Get PDF
    Reactively sputtered tungsten nitride (WxN1–x) layers are investigated as diffusion barriers between Al overlayers and Si shallow n + -p junctions. Both amorphous W80 N20 and polycrystalline W60 N40 films were found to be very effective in preserving the integrity of the n + -p diodes for 30-min vacuum annealing up to 575 °C. Diode failure at higher temperatures is caused by localized penetration of Al into through the WxN1–x barriers. The effectiveness of the barrier decreases for polycrystalline W90 N10 and is worse for pure W

    Thermal stability and nitrogen redistribution in the〈Si〉/Ti/W–N/Al metallization scheme

    Get PDF
    Backscattering spectrometry, Auger electron spectroscopy, and x‐ray diffraction have been used to monitor the thin‐film reactions and nitrogen redistribution in the 〈Si〉/Ti/W–N/Al metallization system. It is found that nitrogen in the W–N layer redistributes into Ti after annealing at temperatures above 500 °C. As a consequence of this redistribution of nitrogen, a significant amount of interdiffusion between Al and the underlayers is observed after annealing at 550 °C. This result contrasts markedly with that for the 〈Si〉/W–N/Al system, where no interdiffusion can be detected after the same thermal treatment. We attribute this redistribution of nitrogen to the stronger affinity of Ti for nitrogen than W. If the Ti layer is replaced by a sputtered TiSi_(2.3) film, no redistribution of nitrogen or reactions can be detected after annealing at 550 °C for 30 min

    Pressure Induced Hydration Dynamics of Membranes

    Full text link
    Pressure-jump initiated time-resolved x-ray diffraction studies of dynamics of the hydration of the hexagonal phase in biological membranes show that (i) the relaxation of the unit cell spacing is non-exponential in time; (ii) the Bragg peaks shift smoothly to their final positions without significant broadening or loss in crystalline order. This suggests that the hydration is not diffusion limited but occurs via a rather homogeneous swelling of the whole lattice, described by power law kinetics with an exponent β=1.3±0.2 \beta = 1.3 \pm 0.2.Comment: REVTEX 3, 10 pages,3 figures(available on request),#
    corecore