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Summary

A ncar-wall four-equation turbulence model is developed for the calculations of hi gh-speed
compressible turbulent boundary layers. The four equations are the k-¢ equations and the @-89
equations. These equations are used to define the turbulent diffusivities for momentum and heat
fluxes, thus allowing the assumption of dynamical similarity between momentum and heat
transport to be relaxed. The Favre-averaged equations of motions are solved in conjunction with
the four transport equations for k, ¢, 62 and €. Calculations are compared with measurements
and with another model predictions where the assumption of a constant turbulent Prandtl number is
invoked. Compressible flat plate turbulent boundary layers with both adiabatic and constant
temperature wall boundary conditions are considered. Cases where the free-stream Mach number
as high as 10 and where the wall temperature ratio as low as 0.2 are calculated. Results for the
range of low Mach numbers and temperature ratios investigated are essentially the same as those
obtaincd using an identical ncar-wall k-€ model and the assumption of Pr,=0.9. One reason could
be that the model constants used in the 62 and €g cquations have not been optimized to give the
best results for incompressible and compressible flows. In general, the numerical predictions are
in very good agreement with measurements and there are significant improvements in the
predictions of mean flow properties at high Mach numbers. Present results further show that the
calculated Pr for all cases investigated varies rapidly from about 0.5 at the wall to a maximum of
approximately 1.6 in the near-wall region; however, it quickly scttles to a constant value of 0.9
beyond y:, 2 200. Therefore, the calculations lend credence to the Pr, = 0.9 assumption invoked

by other researchers.
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Nomenclature

English Letters

ay, by coefficients in the expansion for k* in the near-wall region
Ayys Dyy coefficients in the expansion for uv* in the near-wall region
ag2, bg2 coefficients in the expansion for 6*2 in the near-wall region
ayg, byp coefficients in the expansion for vB* in the near-wall region
¢g» Deg coefficients in the expansion for € in the near-wall region
A model constant taken to be 45

B constant in law-of-the-wall

Cia model constant taken to be 0.1

Cai model constant taken to be 1.8

Ca model constant taken to be zcro

Ca model constant taken to be 0.72

Cu model constant taken to be 2.2

Cas model constant taken to be 0.8

Cy skin friction coefficient, = 21,,/p in

(Cp) skin friction coefficient for an incompressible flow

O specific heat at constant pressure

Ce1 model constant taken to be 1.5

Cer model constant taken to be 1.83

Cu model constant taken to be 0.096

Cy model constant taken to be 0.11

Cq2 model constant taken to be 0.11

Cep model constant taken to be 0.11

fw2 near-wall damping function for € equation

fw ed near-wall damping function for gg equation

fy near-wall damping function for turbulent momentum diffusivity
£y ncar-wall damping function for turbulent heat diffusivity

H instantaneous total enthalpy, = C,T + %UkUk

k turbulent kinetic energy

k* normalized k, = k/u%

M Mach number

M, Mach number based on friction velocity, = u/(YRT,,)1/2

p instantaneous pressure



uvt

vB+

Greek Letters

Reynolds fluctuating pressure
molecular Prandtl number
turbulent Prandtl number

universal gas constant

turbulent Reynolds number, = k?/Ve

Reynolds number based on momentum thickness
instantaneous tempéfémré

ith component of the instantaneous velocity

instantaneous velocity components éloﬁg X and y, respectively
ith component of the Favre fluctuating velocity

Favre fluctuating velocity componént‘sr alorig x and y, respectively
normalized mean U velocity, = (U)/u,

friction velocity, = (T,/P w) /2

normalized turbulent shear stress, = <uv>/u.%

normalized turbulent heat flux, = <v6>/U_ O,

coordinates along stream and normal directions

normalized y coordinate, = yu/v

normalized y coordinate, = yu,/ v,

thermal conductivity
turbulent heat diffusivity
specific heat ratio

boundary layer thickness

solenoidal dissipation rate of k

dissipation rate of temperature variance
dissipation rate defined as € - 2V (9Vk/dy)2
dissipation rate defined as g - G (9V62/dy)2
dissipation rate defined as € - 2Vk/y2
dissipation rate defined as gg - o 62/y2
normalized dissipation rate, = EVW/uf
normalized dissipation rate, = sevw/u%@i,
Favre fluctuating temperature

friction temperature

temperature variance

vi
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. . 2
0+2 normalized temperature variance, = <02>/0%,
e mean component of temperature
von Karman constant

A

fluid viscosity

u turbulent viscosity

\Y fluid kinematic viscosity

v, turbulent kinematic viscosity, = [1,/p
& near-wall correction to € equation
e near-wall correction to £¢ equation
p instantaneous fluid density

p' Reynolds fluctuating density

Ok model constant taken to be 0.75
O¢ model constant taken to be 1.45
Oy2 model constant taken to be 0.75
Ogp model constant taken to be 1.45
T shear stress

; fluctuating vorticity

Subscripts

aw adiabatic wall

r reference condition

w wall

oo free-stream condition

Overbars

— time-averaged quantities
Brackets

) Favre-averaged quantities

vii
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1. Introduction

In non-isothermal turbulent flow calculations, turbulent momentum and heat fluxes need
modeling if the governing equations are to be closed. If, in addition, the flow is compressible, the
modeling of these fluxes are complicated by the presence of a variable mean and fluctuating density
in the governing equations. Conventional approach is to neglect the effects of the fluctuating
density and to propose models for the momentum fluxes while an additional assumption is made to
relate the heat fluxes to the modeled momentum fluxes. Proposals for the incompressible
momentum fluxes range from one-equation to second-order closure models (Speziale 1991). Most
closure schemes for compressible flows invoke Morkovin's (1962) hypothesis of dynamical field
similarity between compressible and incompressible flows. This assumption, therefore, allows the
dircct extension of incompressible models to account for compressibility cffects. In addition, the
assumption of dynamical similarity between turbulent heat and momentum transport is invoked and
this permits the specification of a constant turbulent Prandtl number in the closure schemes (van
Driest 1951; Anderson and Lewis 1971; Bradshaw 1977; Wilcox 1988; Speziale and Sarkar 1991;
Aupoix and Cousteix 1991). Under these assumptions compressibility effects are accounted for by
the mean density alone. As a result, the ability of conventional modcls to reliably predict
compressible turbulent boundary-layer flows for Mach numbers M, 2 5 has been called into

question (Bradshaw et al. 1991; Huang et al. 1992).

Attempts to relax some of these assumptions have been made recently. For examplé,
Zhang ct al. (1992) propose a compressible near-wall k-€ model where all additional dilatational
terms are systematically derived and accounted for in the governing equations. Therefore, they are
able to asscss the validity and extent of Morkovin's hypothesis. Their analysis reveals that, if the
near-wall model is internally consistent and asymptotically correct, Morkovin's hypothesis is
essentially valid for adiabatic wall with M,, as high as 10. Consequently, the predictions in this
Mach number range are in very good agreement with measurements. On the other hand, the model

predictions of Cy in the case of cooled-wall boundary layers are not as good. The reason may not
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be the breakdown of Morkovin's hypothesis but rather the conscquence of the assumption of a
constant turbulent Prandtl number. The present study makes a first attempt to assess this postulate,
and proposes to relax the aséumption of a constant turbulent Prandtl number in the modeling of
compressible turbulent boundary-layer flows. A near-wall four-equation model is suggested as an
alternative; two equations each to modcl the turbulent heat and momentum fluxes. The following

approach is adopted in the formulation of this near-wall four-equation model.

In Zhang et al.'s (1992) near-wall k- model, the compressible dissipation function is split
into a solenoidal part, which is not sensitive to changes of compressibilify indicators, and a
dilatational part, which is dircctly affccted by these changes (Sarkar et al. 1989). This procedure,
thercfore, isolates terms in the k cquation with explicit dependence on compressibility so that they
can be modeled accordingly. An etjtialion that governs the ti’ah5p0rt of the solenoidal dissirpation
ratc with additional terms that are cxplicitly dependent on compressibility effects is derived
similarly. A model (Sarkar et al. 1989) with an explicit dependence on the turbulent Mach number

is zidopted for the dilatational dissipation rate. Thus formulated, all ncar-wall incompressible flow

“models could be expressed in terms of the solenoidal dissipation rate and straight-forwardly

cxtended to compressible flows. As a result, the incpmpressible equations are recovered correctly

in the limit of constant density and vanishing turbulence Mach number. A number of near-wall

two-cquation models are available (Myong and Kasagi 1990; Deng and Piquet 1991; Karlsson et

“al. 1991; Michelassi et al. 1991; So et al. 1991a; Yang and Shih 1991). However, none is as

widely tested for asymptotic consistency as the model of So et al. (1991a) who have validated their
model against such benchmark data as the direct numerical simulations of channel flows (Kim et al.
71798777;717\74;1nsour et al. 1988), of flat plate boundary-layer ﬂowé (Spalart 1988) and of Couctte flows
(Lee ﬁnd Kim 19’9"1’) as well as experimehtﬁ rﬁeasuremcms (Klebanoff 1955; Nishino and Kasagi
1989). Thc?ésﬁlts; are in excellent agreement with data and have been reported by So et al.
&19916:);and by Zhang and So (199'1:). In view of this, Zhang et al. (1992) adopt the near-wall

model of So et al. (1991a) and extend it directly to compressible flows. Their results show that
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compressible flat plate turbulent boundary layers can be predicted correctly up to M, = 10 for both
adiabatic and cooled wall boundary conditions. Therefore, this suggests that the near-wall k-¢€

model of Zhang et al. (1992) should be adopted for the momentum fluxes in the present study.

If a constant turbulent Prandtl number is not assumed, consistent with the momentum flux
model, a near-wall heat flux model has to be proposed. Near-wall modeling of hcat fluxes is not
as well developed; nevertheless, a second-order closure has been proposed by Lai and So (1990a)
and a W—eg model has been put forward by Nagano and Kim (1988) for non-isothermal
incompressible flows. However, none has been formulated for compressible flows. The work of
Zhang et al. (1992) boints to the importance of having an internally consistent and asymptotically
correct near-wall model for compressible flows. Therefore, if an incompressible near-wall model
is to be extended to compressible boundary layers, its asymptotic behavior near a wall has to be
analysed first. This analysis has been carried out for the —87-89 model by Sommer et al. (1992) and
their results show that the a—se model of Nagano and Kim (1988) fails to correctly reproduce the
asymptotic behavior of the temperature variance and its dissipation rate. Modifications along the
line of So et al.'s (1991a) analysis of the € equation have been proposed and a correction function
for the gq equation has been derived by extending the coincidence condition of Shima (1988) to the
analysis of the gg equation. Thus derived, the new near-wall m—se model for heat fluxes is found
to correlate well with direct simulation data (Kim and Moin 1989; Kasagi et al. 1991) and
experimental measurements (Johnk and Hanratty 1962; Hishida et al. 1986). In particular, the
asymptotic near-wall behavior of the direct simulation data is reproduced correctly for both
constant temperature and constant heat flux wall boundary conditions. This near-wall m—se model
is extended to compressible flows in the present study by following the approach used by Zhang et

al. (1992) to develop the compressible k-£ model.

The four equations thus formulated are used to calculate compressible flat plate turbulent
boundary layers with adiabatic and constant temperature wall boundary conditions. Comparisons

with well documented experimental measurements (Fernholz and Finley 1977) as well as with the
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model calculations of Zhang et al. (1992) are carried out. Furthermore, the model is used to
calculate the variation of skin friction coefficient with wall temperature for a cooled wall at a fixed
free-stream Mach number and the result is compared with the van Driest I formula (Kline et al.
1981). The validity and extent of the constant turbulent Prandtl number assumption is then
asrsessed by comparing the results of the four-equation model with those of the k-€ model (Zhang

et al. 1992).

In the following, the governing cquations for compressible boundary layers are given in
Section 2. The modeled equations for k and € as derived by Zhang et al. (1992) are presented in
Section 3. In Section 4, the near-wall modeled equations for 02 and €g as derived by Sommer et
al. (1992) are given together with their extengion to compressible flows. Model validations and
comparisons with measurements are discussed in Section 5. Finally, the conclusions of this study

are presented in Section 6.




2. The Compressible Boundary-Layer Equations

The mean equations of motions for compressible turbulent boundary layers can be derived
from the instantaneous Navier-Stokes equations by applying Favrc-averaging and then invoking
the Prandtl boundary-layer approximations to simplify the resulting averaged equations. Favre
decomposition is invoked for all variables except p and p where conventional Reynolds

decomposition is assumed. In other words,

Ui=(Up+u M
T=(0)+6 , @)
P=D+p , ®)
o=F+p . @

When these decompositions are substituted into the Navier-Stokes equations and time a{veraging is
applied, a set of turbulent mean flow equations are obtained. The boundary-layer approximations
and the assumption of negligible fluctuations in fluid properties, such as y, C,, etc, are used to
further simplify these equations. Since the pressure field is constant for flat plate boundary layers,

the resulting compressible turbulent boundary-layer equations can be written as (Wilcox 1988):

S E )3 ) -0 )
o), a<U> o[ ]
p(U) ==~ +p (V) =~ "3 (u+ut)WJ : 6)
JOE A
alln W )o(H) o(U)
g{(m B ) w22
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where Cartesian x-y coordinates have been used and, consistent with conventional wisdom, the
temperature equation is converted into the total enthalpy equation. The mean equation of state is
assumed to be given by p = p R <©> and Sutherland's law is used to evaluate the mean fluid

viscosity (Zhang et al. 1992). Therefore, once L and Pr are known, (5) - (7) can be solved to

give the velocity and temperature fields inside the boundary layers.

In writing down these equations, gradient transport has been assumed for both the

turbulent momentum and heat fluxes. Therefore, if U, is taken to be given by p (Vv ), then the

turbulent fluxes can be written as:

P = B v%‘yi) , ®
pvo) = 5&%—>- - ©

It should be pointed out that even though the equations are written in terms of a turbulent Prandtl
number Pry, they do not imply constant Pr,. The equations are simply written in this form for
convemence and to comply with conventional format (W ilcox 1988; Zhang et al. 1992). Here, Pr;

=V /— and iﬁiLL lent diffusivities are defined as:
= C f k /e , (10)
W, = C3fk[k62/egq] 2 | (11)

where the damping functions are to be defined when closure models for the momentum and heat
fluxes arc discussed in the next two séclions. In this form, Pr varies according to the variations of
viand 0. In thé following, near-wall turbulence models are proposed for V| and & so that their
variations across the boundary layers can be determined together with other properties of the

boundary-layer flows.

i e b
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It should be pointed out that a rigorous derivation of (7) will give an additional turbulent
kinetic energy term on the right hand side of (7) as pointed out by Zhang et al. (1992). In the
present formulation, this term is omitted consistent with the work of other researchers (Wilcox
1988). Besides, Zhang et al. (1992) have demonstrated that the neglect of this term has a positive
effect on the prediction of skin friction for compressible boundary-layer flows with a highly

cooled-wall.

The boundary conditions for <U> and <V> are no slip at the wall and <U> approaches U,
in the free stream. As for <H>, its free-stream value is given by H,, = cpew + UEO/Z, while its

wall value is taken to be either that of an adiabatic wall or a specified constant <H>.



3. Near-Wall k-¢ Turbulence Model for v

In adopting and extending the near-wall k-€ model of So et al. (1991a) to compressible
flows, Zhang et al. (1992) made two assumptions to simplify the formulation. The first
assumption is to split the compressible dissipation function into a solenoidal part according to tl’w
suggestion of Sarkar et al. (1989), so that the solenoidal dissipation is insensitive to
compressibility effects and, therefore, approaches its incompressible limit correctly. A second
aséumption is the simultancous neglect of fluctruating density and temperature at the wall.
Physically, this assumption is not quite valid. However, it does permit an asymptotic analysis of
the near-wall behavior of the compressible kand e equatidns to be carried out in a manner similar
to that proposed 'by Lai and So (1990b) and So et al. (1991a) for incompressible flows.
Consequently, it is found that the near-wall k-¢ model of So et al. (199fa) can be extended to
compressible flows and the dilatational effects in the near-wall region can be accounted for by the
varying mean density alonc. Since Zhang ct al. (1992) have found that the additional dilatational
terms have little effect on compressible boundary-layer calculations in the Mach number range of 0
< M,, < 10 and wall temperature ratio range of 0.2 < T /T, < 1.0, as a first attempt, it is prudent
to calculate turbulent heat fluxes using a near-wall model where the additional dilatational terms are
neglected. In view of this, the near-wall k-e model of Zhang et al. (1992) without the dilatational
terms are adopted for the present study. The modeled k-€ equations for boundary-layer flows can

be written as:

S0y, 5 95_1(— MES —(8<U>)2 5
P<U>ax+p<V>ay—ay[u+aay}+1ut 3y - pe (12)
R OV S RTAY: e O - ol

JOCR L ot X copf) 5. oy
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where &, the near-wall function proposed for the € equation, and €, the solenoidal dissipation of k,

are defined by
| .e€ e*2
E=fy 2P [-2?+ 1.5 T} _ (14a)
PE = HO; . (14b)

Here, f,, 5 is a damping function that asymptotes to one at the wall and zero far away from the
wall. Itis defined as f,, 5 = e ®RV64D° The boundary conditions for k and € are specified to be zero

in the free stream. At the wall, k = 0 is assumed, while € is taken to be given by 2v,, (aﬁ/ay)i.

Once k and € are known, they can be used to evaluate V according to (10) and hence [ =

p (V). The damping function f}, associated with Vv, is given by So et al. (1991a) as
This damping function behaves correctly as the wall is approached, i.e. f;, goes like y-l asy

approaches zero. In other words, the modeled turbulent shear stress again behaves like y3 near a

wall similar to its exact behavior.



4. Near-Wall _9_5-89 Turbulence Model for o

A detailed derivation of the non-isothermal incompressible near-wall ?‘56 model has been
- given by Sommer et al. (1992). Consequently, there is no need to repeat the derivation here.
However, some major differences between the k-€ equations and the 6—2_-89 equations should be
pointed out. The firstis in the mbdeling of the generation and destruction terms in the €g equation.
Since thermal and velocity time scales are of equal‘imponance in turbulent heat transfer, both time
scales are used in the modeling of the generation and destruction terms. A second difference is in
the wall boundary conditions. Constant heat flux as well as constant temperature wall boundary
condition can be speciﬁed for non-isothermal flows. Thercfore, these differences have to be taken
into account in the derivation of the near-wall correction for the €g equation. Sommer et al. (1992)
incorporate the coincidence condition of Shima (1988) to treat the g cquation and derive a near-
wall correctioﬂih rzi';rhanncr similar to that use:d’By So et al. (1991a) in their derivation of €. Thus
formulated, the 07 and €g equations behave corre»ct]y as a wall is approached; at least to the lowest

order of y.

The near-wall 82 and eg equations of Sommer et al. (1992) for a non-isothermal

incompressible turbulent boundary-layer flow can now be writtcn as:

_30°  _a0° 2 ( aez) R (oct aez)

U +V = —los—] + —|=L—
Ix dy dy \  dy dy \Gg? dy
— —\2
+ 204 99 + 20 8_9 - 2¢eq,
Jx ay (16)
70 | o8 _ Q_(aé&) N _a_(ﬂa_eg) e Cnfp,
ox ay dy " dy 0y \Ggg 0y ? 0
+ Cdzf Py + Ca3 Ee% - Cd4§—%£9 - CdSﬁ‘ gg + o )

0
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where P is the turbulent production of k defined as P = -uv(dU /dy) and Py is the production of

temperature variance due to mean temperature gradient and is given by Pg = -[uB(0®/9x) + vB(0O

)2y)]. The near-wall correction, &g, and the viscous dissipation of 82, €g, are defined as:

Ee £ 9;2 Eop* (182)
ggg = fw,ge (Cd4 - 4) —Eg + Cd5 = 83 -+ (2 - Cd[ - PlCdz):pe ,
2 k 2 2
6 4] 6
. o 06 06
9 =
OxXy OXy (18b)

Here, P; = -E(a@ax), where dO/dx is constant for constant wall heat flux boundary condition.
The presence of this term in &g is required in order to balance the term involving d8/0x in the 02
and g4 equations in the near-wall region for constant wall heat flux boundary condition. It should
be pointed out that for constant wall temperature, the term is identically zero because 90/9x = 0.
The damping function f, ¢g is introduced to guarantee that g vanishes far away from the wall.

This way, the high-Reynolds-number form of the equations is recovered correctly.

Consistent with So et al.'s (1991a) approach for the k-¢ model, Sommer et al. (1992)
suggest the following form for the damping function, or fy, ¢g = exp[-(Re/80)2]. Once 02 and €p
are known, o can be determined by assuming gradient transport similar to that invoked for v,.
However, it should be pointed out that both thermal and velocity time scales are involved in the

transport of heat. Therefore, o should be defined as
oy = Cafy k[k02/egq] 12 | (19)
where the damping function fj is given by

Ci

4V Ret

£, =[fw,€9 +[1 - expl-y /AP . (20)

11
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The boundary conditions for 82 and eg are again specified as zero in the free stream and vanishing

62 at the wall. As for gg, its value at the wall is given by 0, (9V02/0y)2.

The incompressible near-wall 82-gg model for oy can be extended to compressible flows in
the following manner. Again, fluctuating temperature and density are assumed to go to zero
simultaneously at the wall and fluctuating fluid properties are neglected. Therefore, all fluid

properties, such as [, Cp, etc., can be replaced by their time-averaged values and the following

near-wall expansions can be assumed for the fluctuating quantities. These are:

u=ayy +ay2+ (21a)
v=by +byy2+ | 21b)
B=ciy+cpyl+ (21c)
p'=dyy + dyy? + (21d)

where the a's, b's, ¢'s and d's are random functions of x, z and t. As pointed out by Bradshaw
(1974), 6 and p' cannot go to zero simultaneously at the wall; otherwise it would lead to a zero
wall p', which is not physically possible. In general, 8 is taken to be zero at the wall but p' is not.
Here, p' is also assumed to be zero at the wall, however, its valuc away from the wall is finite.
Therefore, this assumption represents an improvment over Morkovin's hypothesis (1962) which
negiécfs the influence of fluctuating density awléorgether in the whole flow. Under this assumption
and with the help of the Vcominuity equation for p' and (21), it can be easily shown that by is
identically zero irrespective of the wall thermal boundary conditions. This means that the near-wall
asymptotic analysis of So ct al. (1991a) can be used to examine the exact and modeled
compressible 62 and g equations in the near-wall region. The result is similar to that given by
Sqmmer et al. (1992) for the incompressible case. Therefore, the incompressible form of the near-
wall?and €9 equations can be directly extended to compressible flows just like the case made for

the k and € equations.

12
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In view of this, the compressible 82 and €g equations can be written as:

ol 5l g (5adl) 2 feadk)

3x dy 90y dy /  dy\og* dy
2 2
+ 2p oy (M + 2p o (@ -2pgq (22)
ox -y
5 L pwlte o .3_(55;38_6) . _E)_(Bata&) fCalha Ao)\
ox ay Oyl " dy) " aylog ay) " TN ok
__ [ole)? —— [ol@)) _ [ouy\
+ Ca2p o (—(—>) + Caxsp o (—(—) + Cd3%”t(ﬂ)
02 dy dy dy
T ~_
- Cd4g‘%p£9 - CdSﬁ pey + Eeo 23)

where the near-wall correction function, &g, and the viscous dissipation of <6%>, €g, are given by

~ — *2
— £ £ *
Eeo = fueoP |(Cas-4)=Leg + Cdsi(g-ee - == +(2-Ca -Cdzpl')—_%Pg : (24a)
0° 0’ 0
. 5 208 09
o =0(——) .
Oxg OXx (240)

The boundary conditions for <6%> and €g are the same as those specified in the incompressible

case. However, at the wall, g is given by aw(aJeT/ay)?

13
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5. Results and Discussion

The governing equations (5) - (7), (12), (13), (22) and (23) are solved using the boundary-
layer code of Anderson and Lewis (1971) with appropriate modifications made to the computer
program. Exact boundary conditions at the Wall for the turbxilencé quantities are used because,
with near-wall corrections proposed in (14) and (24), the equations can be integrated directly to the
wall and no approximations need be applied to the numerical solutions of the equations in the near-
wall region. Three different cases are selected from the data file compiled by Fernholz and Finley
(1977). Two cases have adiabatic wall boundary conditions and they are labeled as cases
53011302 and 77i_°;0750504 by Fernholz and Finley (1977). The frce-strcam Mach numbers of these
two cases a'rer 3.544 and 10.31, respectively, and the corresponding Rg are 5,532 and 15,074.
The wall temperature ratio for these two cases is 0,,/0, = 1.0, where O, is assumed to be the
recovery temperature for adiabatic wall boundary condition and is taken to be ©,,, for cooled wall
boundary condition. Since the fluid medium of Case 53011302 is air, Sutherland's law can be
used to evaluate viscosity and Pr = 0.74 is specified. On the other hand, helium is used in the
experiments of Case 73050504, therefore, Pr = 0.7. A power law as suggested by Fernholz and
Finley (1977) is used to calculate viscosity in this case. The third case is specified by ©,,/0,, =
0.92, M_, = 5.29 and Ry = 3,939. Air is also the working fluid in this case, therefore,

Sutherland's law can again be used to calculate viscosity and Pr = 0.74. The cases chosen span a

wide range of M., and Rq. In addition to comparing with measurements, the present results are

also compared with the calculations of a near-wall k-g model where a constant Pry is assumed. The
model adopted is identical to solving (12) and (13) with Pr, = 0.9. Finally, another set of
calculations is carried out so that the results can be compared with the van Driest II formula (Kline
ct al. 1981) used to estimatcr the variation of C¢ with ©,,/0,,, for a fixed M. This set of
calculations isrcarrrried out at M, = 5.0 and Pr = 0.74. It should be pointed out that all calculations
are carried out to the same Ry as the experiments so that proper comparisons can be made with the

measurements,
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Since turbulence measurements from these three cases arc not available for comparisons, an
alternative check on the correctness of the model is to compare the near-wall asymptotics predicted
by the two- and four-equation models. This approach is justified because So et al. (1991a) and
Zhang et al. (1992) have demonstrated that the near-wall asymptotics deduced from the k-€ model
are in excellent agreement with direct numerical simulations. Furthermore, Sommer et al. (1992)
have also validated the near-wall behavior of the 82 and gg cquations using direct numerical
simulation results. Therefore, a comparison of the present predictions with those of the k-€ model
can help establish the validity of the four-equation model for near-wall calculations of compressible
flows. Once the near-wall behavior is properly established, the present calculations are used to
assess the assumption of Pr; = 0.9 adopted in Zhang et al.'s (1992) and other researchers' (Aupiox

and Cousteix 1991; Wilcox 1988) calculations.

According to So et al. (1991a) and Sommer et al. (1992), near a wall, the quantities k,
<uv>, £, <6%>, <vB> and gy can be expanded in terms of y. After proper normalization using

wall variables, the expansions can be written as (So et al. 1991a; Sommer et al. 1992):

k+ = 2y (ya)2 + b(ys)3 + sy (25)
qu+ = *+13 *v4

uvt=a,(ye)? + byy(yw) ¥ + e , (26)
£+ =2ay + 4byyy + weeees 27)
02 = ag(ye)2 + bo(ys)? + ... (28)
Vet = +13 +14

vO+t =a,5(yw)’ + byelyw)? + .. (29)
Eg = agg + bEGY:-V + ... (30)

The accuracy in which the near-wall asymptotics, such as ag, ay, 2, ayg and agg, can be predicted
is a measure of the correctness of the four-equation model. Furthermore, k+/£:+(ij)2 and

8*2/eg(y:,)2 approach exactly 0.5 and Pr, respectively, at the wall. So et al. (1991a) and Zhang et

15
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al. (1992) have shown that the k-& model gives rcasonable values for ay and a,,, compared to direct
numerical simulations and an exact value of 0.5 is calculated for k+/£+(y:;)2 at M, as high as 10.
This means that the k and e'equations are asymptotically correct and internally consistent. Since
the same validation has been carried out by Sommer et al. (1992) for the 07 and £g equations for
incompressible flows, the present objective is to demonstrate that the values calculated for ag, ayg
and agg are reasonable and that 9*2/£;(y::,)2 is evaluated to be identical to the Pr assumed for the
compressible calculations. Therefore, (22) and (23) can be shown to be asymptotically correct and

internally consistent for incompressible as well as compressible flows,

The mean velocity and temperature results are presented in Figs. 1 - 6 with the adiabatic
wall cases shown in Figs. 1, 2, 4 and 5 and the cooled wall case given in Figs. 3 and 6. Three
different ways of plotting the velocity results are presented; the conventional semi-log plot (Figs. 1
and 3a), the linear plot (Figs. 2 and 3b) and the semi-log plot in van Driest (1951) coordinates
(Fig. 4). On the other hand, only linear plots of the mean temperature are shown in Figs. 5 and 6
because a friction temperaturc cannot be suitably defined for adiabatic wall boundary condition,
therefore, a semi-log plot of the temperature profile is not appropriate. The rationale for presenting
the mean velocity in these three different forms can be explained as follows. Firtsly, the
conventional semi-log plot for compressible flows has a density effect included in the definitions of
ut and ytv, therefore, the true velocity profile prediction cannot be directly compared with
measurements. Seébndly, errors in the predictions of the mean temperature and hence the mean
density can occur in such a way that they tend to mask the discrepancy in the semi-log plots of the
mean velocity. In view of this, it is also necessary to compare the mean velocity and temperature
in linear plots so that their actual agreement with measurements can be thoroughly analysed.

Thirdly, van Driest suggests stretching u* further by a density ratio so that a new u: can be defined

as
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Pw (31

0

With this new coordinate, the compressible law-of-the-wall as deduced by van Driest (1951) and

simplified by Bradshaw (1977) can be written as

ut = 0111 Iny$, + 5.2 + 95Mt2 . (32)

This form differs from the conventional law-of-the wall which is given by

ut = 0‘1“ Iy, + B, (33)

where the constant B is a function of Mach number for compressible flat plate turbulent boundary
layers. When the velocity results are plotted in terms of u* and u:, the validity of (32) and (33)
can be evaluated. Thus presented, the mean properties can be thoroughly compared and their
agreement or lack thereof with measurements and other model calculations can be analysed.

Finally, the calculated Cg for the different cases is tabulated in Table 1 for comparison with data.

It can be seen from these plots that the model calculations are in good agreement with
measurements and the predictions of the k-€ model. Furthermore, these results are essentially
identical at low Mach numbers for both adiabatic (Figs. 1a, 2a and 5a) and cooled wall (Figs. 3
and 6) conditions. The only difference appears to occur in the case of M, = 10.31, where the
four-equation model gives a significant improvement in the predictions of both mean velocity and
temperature (Figs. 1b, 2b and 5b) compared to those given by the k-€ model. This improvement is
due to a better estimate of the turbulent Prandtl number near the wall. More will be said about this
when the turbulence properties in the near-wall region are examined. Zhang et al. (1992) have
demonstrated that the calculated ut can be described fairly well by the conventional law-of-the-wall

(33) and the constant B thus deduced is approximately 4.7 for the three cases examined. The

17



present results are in agreement with their conclusion. Therefore, the variable turbulent Prandtl
number formulation has little or no effect on the log region of the boundary-layer flow. Plots of
the mean velocities in van Driest coordinates for the case with M, = 4.544 are shown in Fig. 4
together with a plot of (32). A line parallel to (32) can be drawn through some of the data points;
however, the intercept thus deduced is different from that given in (32). On the other hand, the
calculated profiles from the two different models are in very good agreement with data over a much
wider range of y:v and the slope of the log-law thus determined yields a von Karman constant x =
0.35 which is significantly smaller than a value of 0.41 quoted by Bradshaw (1977). Finally, the
calculated Cy's are compared with data in Table 1 and, in general, the four-equation model gives a

slight improvement over that of the k-€ model.

The turbulence properties in the near-wall region are plotted in Figs. 7 - 12. Only the
profiles of k*, e+, uv+ and vO * are compared. The results for the adiabatic wall cases are
presented in Figs. 7, 8, 10 and 11 while those for the cooled wall case are shown in Figs. 9 and
12. At low Mach numbers, the predictions of these properties by the two different models are
essentially identical. This conclusion applies to both adiabatic (Figs. 7a, 8a, 10a and 11) and
cooled wall (Figs. 9 and 12) boundary conditions. The only difference comes in the predictions of
the case where M., = 10.31. In general, the present calculations of k+, e+ and uv+ are slightly
lower than those predicted by the k- model. One of the reason is the variable turbulent Prandtl
number. Plots of Pr, across the inner region of the boundary layers are shown in Figs. 13 and 14,
The turrb'lrlriéﬁt'?réndtl number is seen to vary rapidly in the region very near the wall. It increases
from a wall value of about 0.5 to a maximum of approximately 1.6 and then decreases to about
0.75 befo;g settling back to a valuc of 0.9 at y:\, = 200. Thereafter, Pr, remains fairly constant at
0.9. This shows tﬁatr all variations of Pr occur in the region, 0 < y; < 200. Conscquently, it is
not surprisi;né to find that differences in k*, €+ and uv+ between the two model calculations also

take place in this region for the case where M, = 10.31. In conclusion, it can be said that variable
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Pr, effect on the calculated properties is small and this observation is also supported by a

comparison of the near-wall asymptotics which are tabulated in Table 2.

In general, the a, values calculated by the four-equation model are slightly lower than those
deduced from the k-€ model and the differences are insignificant. The other quantities calculated
by the two different models are essentially the same. The four-equation model again yields a
k+/£+(yf\,)2 = (.5 for all three cases considered, thus showing that it is asymptotically correct and
internally consistent as far as the k and € equations are concerned even though they are coupled to
the 62 and €g equations through the mean velocity and mean density fields. Since a friction
temperature cannot be defined for adiabatic wall boundary condition, the free-stream temperature
has to be used to normalize <8%> and €g. As a result, their calculated near-wall asymptotics are at
least one order of magnitude smaller than those for k and €. The calculated a,g from the two
different models are of the same order with those deduced from the four-equation model generally
higher than those determined from the k-& model. Furthermore, the 65 and g equations are also
asymptotically correct and internally consistent because the calculations of 6"2/&‘;;L (y\J,:,)2 are identical
to the Pr assumed for each case. Once the reliability of the near-wall asymptotics has been
established, the calculated variations of Pr; become credible. For all three cases considered, the Pry
calculated is constant beyond yq, = 200 and its value is 0.9. This result lends credence to the Pr, =

0.9 assumption invoked by other researchers (Wilcox 1988; Aupoix and Cousteix 1991; Zhang et

al. 1992) and suggests that it is essentially valid for the range of M, and O,,/0,,, considered.

Zhang et al. (1992) have shown that the k-& model gives excellent prediction of the
variation of C¢/(Cyg); with M, in the range 0 € M_, £ 10 for adiabatic wall boundary condition
compared to the van Driest II formula (Kline et al. 1981). Since the present model is in good
agreement with the k-€ model in its prediction of Cg for adiabatic wall boundary condition, there is
no further need to verify the validity of the four-equation model for its ability to calculate correctly
the variation of C{/(Cy); with M, in the range 0 < M, < 10. On the other hand, its ability to predict

the variation of C¢/(Cp); with ©,,/0,,, for a fixed M., has to be verified. A comparison of the
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present calculations at a constant M, = 5.0 with the results deduced from van Driest II formula
(Kline et al. 1981) and the k-g model is tabulated in Table 3. As suggested by Kline et al. (1981),
the calculations are carried out to Ry = 104 and (Cy); = 2.70x10-3 is assumed. The results reveal
that there are essentially very little difference between the present calculations and those obtained
from the k- model. Both sets of predictions are in good agreement with the van Driest II formula.
Therefore, the ability of the four-equation model to calculate Cs correctly for cooled wall boundary

coditions is established.
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6. Conclusions

A necar-wall four-equation turbulence model has been developed for the calculations of
compressible flat plate turbulent boundary layers with constant heat flux and constant temperature
wall boundary conditions. The four equations consist of the transport equations for k, €, 62 and
€g- These equations are modified for near-wall flow calculations so that they can be integrated
directly to the wall and the exact boundary conditions at the wall can be satisfied. The
modifications of So et al. (1991a) for the k and € equations are adopted and extended directly to
compressible flows. Similar modifications for the 67 and €g equations have been carried out for
the incompressible form of these equations (Sommer et al. 1992) and they are extended to
compressible flows by invoking Morkovin's (1962) hypothesis. Thus formulated, the four-
equation model is internally consistent and asymptotically correct near a wall, and there is no nced

to assume a constant turbulent Prandtl number because the turbulent heat flux can be estimated

from a knowledge of 6% and £g by assuming gradient heat transport.

The near-wall four-equation turbulence model is used to calculate compressible flat plate
turbulent boundary layers with free-stream Mach numbers as high as 10 and with adiabatic and
cooled wall boundary conditions. The calculations are compared with measurements and with the
predictions of a near-wall k-e model where Pr, = 0.9 is assumed. Three cases have been
calculated; two with adiabatic wall boundary condition and one with constant wall temperature.
The free-stream Mach numbers for these cases vary from a low of 4.544 to a high of 10.31 and the
wall temperature ratio varies from 0.2 to 1. Good agreecment with measurements and the k-£ model
calculations is obtained. In general, a variable turbulent Prandtl number formulation improves the
calculated properties; particularly for high free-stream Mach numbers. At M, = 10.31, there arc
significant improvements in the predictions of the mean velocity and mean temperature compared to
the k-€ model. The turbulent Prandtl number thus calculated has a wall value of about 0.5 for all

cases considered. It increases sharply to approximately 1.6 away from the wall and then settles
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downto09ata y“:, =200. These results, therefore, verify that the Pry, = 0.9 assumption invoked
by past researchers is valid for compressible flat plate turbulent boundary layers for the range of

M., and ©,,/Q,,, examined in this study.
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- Table 1.

Comparison of calculated and measured Cy.

CfX 103
Source
M, =4.544 M, = 10.31 M, =5.29
Data (Fernholz and Finley 1.26 0.24 1.31
1977)
k-¢ model (Zhang et al. 1.320 0.220 1.262
1992)
Four-equation model 1.35 0.24 1.28

26

R oY T T LA RN IR L L L L A R I AR )

e m

[N A A TR T



(TN

Table 2. Comparisons of the near-wall asymptotics deduced from the two different models.
Near-wall k-€ model (Zhang et al. 1992) Four-equation model
asymptotics
M, = 4544 | M, = 1031 | M..=529 | M, =4.544| M, = 1031 | M. =5.29
Ay 0.0836 0.0771 0.0788 0.0824 0.0739 0.0772
agy x 104 6.76 6.74 6.14 6.75 6.30 6.10
kHfet(yl)? 0.50 0.50 0.50 0.50 0.50 0.50
ag - - - 0.00310 0.23415 0.00547
g - - - 0.00419 0.33450 0.00739
ayg X 105 -0.118 - 1.310 - 0.059 -0.20 - 1.69 -0.10
- - - 74 . 74
ey o7 070 O
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Table 3.

Comparisons of calculated C¢/(Cy); for cooled wall boundary condition at M, = 5.0.

id

Ci/(Cp;
Ow/Oaw van Driest IT k-¢ model (Zhang et | Four-equation

(Kline et al.1981) al. 1992) model
0.2 0.58 + 0.058 7 0.52 0.52
0.4 0.49 + 0.049 0.47 0.49
0.6 0.43 + 0.043 0.45 0.46
0.8 0.39 + 0.039 0.42 0.42
1.0 0.35 + 0.035 0.38 0.38
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Figure 1. Comparison of the mean velocity in semi-log plots for adiabatic

wall boundary condition: (a) M« = 4.544, (b) M = 10.31.
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Comparison of the mean tefnperature in linear plots for cooled
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