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Summary

A second-order model for the velocity field and a two-equation model for the temperature

field are used to calculate supersonic boundary layers assuming negligible real gas effects. The

modeled equations are formulated on the basis of an incompressible assumption and then extended

to supersonic flows by invoking Morkovin's hypothesis, which proposes that compressiblility

erfects are completely accounted for by mean density variations alone. In order to calculate the

near-wall flow accurately, correcting functions are proposed to render the modeled equations

asymptotically consistent with the behavior of the exact equations near a wall and, at the same time,

display the proper dependence on the molecular Prandtl number. Thus formulated, the near-wall

second-order turbulence model for heat transfer is applicable to supersonic flows with different

Prandtl numbers. The model is validated against supersonic flows with free-stream Mach numbers

as high as 10 and wall temperature ratios as low as 0.3. Among the flow cases considered, the

momentum thickness Reynolds number varies from ~4,000 to ~ 21,000. Good correlation with

measurements of mean velocity and temperature is obtained. Discernible improvements in the law-

of-the-wall are observed, especially in the range where the log-law applies.
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1. Introduction

Until recently, it was not possible to calculate supersonic flat plate turbulent boundary

layers accurately when the free-stream Mach numbers are higher than 5 (Bradshaw et al. 1991).

The reason can be traced to an incorrect estimate of the near-wall flow using wall functions (Zhang

et al. 1992). With the advent of supercomputers and numerical techniques, it was possible to

numerically simulate simple turbulent flows with and without heat transfer (Moser and Moin 1987;

Kim et al. 1987; Mansour et al. 1988; Spalart 1988; Kim and Moin 1989; Kasagi et al. 1991).

Consequently, asymptotically correct near-wall two-equation models for the velocity and

temperature fields have been proposed (So et al. 1991b; Nagano and Kim 1988; Nagano et al.

1991; Sommer et al. 1992). These models were based on conventional high-Reynolds-number

models with near-wall correcting functions that were derived to satisfy the asymptotic behavior of

the exact equations. As such, the models were formulated for fluids with Prandtl number, Pr = 1

(So and Sommer 1993). These models have been applied to calculate a wide variety of

incompressible flows with and without heat transfer, including direct simulation data, and good

agreement was obtained for all flow cases tested. Extensions to second-order models have been

proposed and validated (Lai and So 1990a,b; So et al. 1991a). Again, the high-Reynolds-number

second-order models were found to give good results when they were modified to yield

asymptotically correct near-wall behavior. The modifications were in the form of near-wall

correcting functions added to the Reynolds-stress and dissipation-rate equations.

These successes, therefore, justify the extension of the near-wall correcting functions to

supersonic flows. The extension was first carried out with two-equation models (Zhang et al.

1992) assuming the validity of Morkovin's hypothesis (1962) and the results indicated that, with

an asymptotically consistent near-wall correction, the models were able to mimic supersonic flows

up to a free-stream Mach number of 10 with an adiabatic wall. In this first attempt, real gas effects

were neglected and the turbulent Prandtl number, Pr t, was assumed to be 0.9. On the other hand,

the calculations of supersonic flows with cooled wall boundary condition and high Mach numbers

were not as satisfactory. Strictly speaking; there is no dynamic similarity between momentum and



heattransport,evenin incompressible flows (Antonia and Kim 1991). Therefore, the constant Pr t

assumption needs to be relaxed. An attempt for supersonic flows has been carried out (Sommer et

al. 1993) and the variable Pr t model used was a modification of the two-equation incompressible

model proposed by Sommer et al. (1992). Therefore, the proposed model was applicable to flows

with Pr = 1 only. The variable Pr t calculations assuming negligible real gas effects were in good

agreement with measurements (Fernholz and Finley 1977; Kussoy and Horstman 1991) and gave

significant improvement over those obtained assuming constant Pr t. The same methodology has

been applied to modify second-order models for supersonic flows (Zhang et al. 1993) and these

calculations with constant Pr t were found to give improvements over those reported by Zhang et al.

(1992), especially the calculations of high Mach number flows with low wall temperature ratios.

This means that, for the first time, a model to treat complex compressible flows is available.

However, the second-order model is still limited by the constant Pr t assumption and by the fact that

the model is only applicable to fluids with Pr -- 1.

Most engineering flows of importance involve fluids whose Prandtl numbers vary with

temperature and the range of variation could be large. Furthermore, some fluids have a Pr that is

vastly different from 1. In view of this, an appropriate variable Pr t model for flows with heat

transfer would be one that could handle a wide variety of Pr in addition to being able to account for

variable Pr effect. This means that a more general incompressible heat transfer model to those

proposed by Nagano and Kim (1988), Nagano et al. (1991) and Sommer et al. (1992) has to be

formulated and validated before its extension to supersonic flows. The task has been attempted by

So and Sommer (1993). Their approach is based on the proposal of Sommer et al. (1992). In

addition to requiring the modeled equations to satisfy the asymptotic behavior of their exact

counterparts, they also try to model the correcting functions so that the parametric dependence on

Pr of the near-wall flow is properly accounted for. The result is a variable Pr t model that could

correctly predict incompressible heat transfer with Pr that varies from a low of 10 -2 to a high of

103 . The model is applicable to flows with constant wall heat flux as well as constant wall
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temperatureboundaryconditionsandthepredictionsarein goodagreementwith suchdiversedata

asthosegivenby Kader(1981),Kim andMoin (1989)andKasagiet al. (1991).

The presentobjective is to formulate a second-ordervariable Prtmodel for supersonic

flows that is valid for a wide rangeof Pr. This is accomplishedby relaxing the constant Pr t

assumption made in the second-order model of Zhang et al (1993) and by extending the heat

transfer model of So and Sommer (1993) to supersonic flows. In the present work, Morkovin's

hypothesis (1962) is again invoked and the approach taken is similar to that outlined in Sommer et

al. (1992). Consequently, the second-order modeled equations of Zhang (1993) for the velocity

field and the two-equation model of So and Sommer (1993) for the temperature field are extended

to supersonic flows. An established boundary-layer code (Anderson and Lewis 1971) is modified

to solve the set of governing equations and the calculations of compressible boundary layers with

adiabatic and cooled wall boundary conditions over a wide range of Mach numbers are compared

with measurements (Fernholz and Finley 1977; Kussoy and Horstman 1991) and the constant Pr t

calculations of Zhang et al. (1993).
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2. Mathematical Formulation

The supersonic flow of an ideal gas with real gas effects, bulk viscosity and body forces

neglected is considered. A density-weighted average is used to decompose the fluctuating

quantities, besides pressure and density, into a mass-weighted mean part and a mass-weighted

fluctuating part. On the other hand, the pressure and density are decomposed using Reynolds

average, which results in a time-averaged mean part and a time-averaged fluctuating part. For any

variable F, the mass-weighted mean is denoted by F, the mass-weighted fluctuating part by f, the

time-averaged mean by ff and the time-averaged fluctuating part byf'. The fluid density is taken

to be p, the dynamic viscosity p, the thermal conductivity k, the specific heat at constant pressure

Cp, and the gas constant is denoted by R. In terms of these variables and the pressure p, the

temperature O, and the ith component of the velocity u i, the mean equations of motions for

compressible turbulence can be written as:

aft /--_ 7";'_ 0 (1)_ + =
at

&--

Op Ui

at
+ (fiUiUj)j =- Ki " _(fiUjj).i + [fi(btij + Uj.i)]j - (PTij).j

_pCp[_ + (pUiCp_)).i - OP Uifii. + -ui-ei. + u;P:i + GijUij

Ot bt

__ _ ( )4- (Yij Uij + RE - (fi fpQi).i 4- -k _).i .i ,

, (2)

(3)

fi = pRO , (4)

where ('),i denotes a gradient with respect to the spatial coordinate x i, the Einstein summation

convention applies to repeated indices, and the Reynolds stress tensor, the Reynolds heat flux

- _j 'vector, the turbulent dissipation rate are defined as zij = _ , Qi = uiO , p c = uij ,

(5)

respectively. The mean viscous stress tensor is given by:
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When deriving these equations, additional assumptions are made regarding the neglect of

turbulent fluctuations of dynamic viscosity, thermal conductivity and specific heat. Also,

according to Speziale and Sarkar (1991), the velocity-pressure gradient correlation term u I p'i can

be written in the equivalent form as

Ul P:i =" ('P R O)-ui).i + (-p R _iO),i " p' u'i,i (6)

From these equations, it can be seen that, to achieve closure, models are required for the Reynolds

i

stress tensor zij, the Reynolds heat flux vector Qi, the pressure dilatation correlation p' Ui, i , the

turbulent dissipation rate e and the mass flux vector _i • In the following, appropriate near-wall

models are proposed for vii, Qi and e, while Morkovin's hypothesis (1962) is invoked to justify

the neglect of p' Ui, i and ui in the modeling of supersonic turbulent flows. The models for zij,

and e are presented first and this is followed by a discussion of the model for Qi.



3. Second-Order Model for the Velocity Field

The modeling of the Reynolds stress tensor is provided by the Reynolds-stress transport

equation which is closed by postulating models for the terms representing turbulent diffusion,

viscous dissipation and velocity-pressure gradient correlation in the exact equation.

Incompressible models for these terms are proposed. Usually the models are formulated for high

Reynolds-number flows, therefore, they are not suitable for near-wall flow calculations.

Furthermore, the modeled equation is not valid at the wall. Consequently, some kind of wall

functions have to be invoked to connect the modeled equation to the wall so that the wall boundary

conditions for the Reynolds stresses can be satisfied. This approach is not satisfactory because it

is too restrictive in the sense that the wall functions proposed are very much flow-type dependent

and thus render the Reynolds-stress model less general compared to other models that are not as

sophisticate or are of lower order. Various remedies have been proposed. However, the most

promising approach is to modify the modeled equations so that they are valid for near-wall and/or

low-Reynolds-number flows.

The approach taken by Zhang (1993) is to derive near-wall correcting functions for the

Reynolds-stress transport equation and the conventional dissipation-rate equation. Certain

constraints are imposed and these include the requirements that the wall boundary conditions for

the Reynolds stresses and the dissipation rate have to be satisfied exactly and that, to the lowest

order of the wall normal coordinate x 2, the near-wall behavior of the modeled equations is

consistent with that of the exact equations. The correcting functions derived by Zhang (1993) give

asymptotically correct matching up to order x 2. Of course, more accurate correcting functions can

be derived; however, these fairly simple near-wall models are found to give results that are in good

agreement with measurements covering a wide range of flow Reynolds numbers (Zhang 1993).

These successes prompt the extension of the incompressible modeled equations to supersonic

flows by invoking Morkovin's hypothesis (1962) and the results are extremely encouraging

(Zhang et al. 1993). In view of this, Zhang et al.'s (1993) modeled Reynolds-stress equations are

adopted in the present work.
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ThecompressibleReynolds-stressequationwritten in thesameform asits incompressible

counterpartisgivenby"

/2-'u' Oi.i) (_Pj u:p,i) + - _itc,k) , (7)+ Hij- Eij + [-_ l.J k,k - + (-UiiCTjk,k+

( 2_...' )where C i.ik,k =- -P_ + aij k

t , i t

Eq = crikui.k + _i.k

are the turbulent diffusion of 't'ij, the velocity-pressure gradient correlation and the viscous

dissipation rate of _'ij, respectively. The last three bracketed terms in (7) arise as a result of

compressibility and are identically zero for incompressible flows. Therefore, if Morkovin's

hypothesis (1962) is invoked, the last three bracketed terms in (7) can be neglected and the

turbulent diffusion, viscous dissipation and velocity-pressure gradient correlation terms can be

modeled as in constant-density flows. Consistent with this assumption, the term p'ul, i in (6) is

also neglected. Finally, the viscous diffusion term (u_---_jk+ _,k is approximated by (-ff'rij_)._.

Thus simplified, (7) can be closed by adopting the near-wall models proposed by Zhang (1993).

Without derivation, these models are given as:

,k

"Wnij = ,:t,ij + + ,z,ij , (9)

R
Here, _ij is given by the high-Reynolds-number model of Launder et al. (1975), _ii is the

W )q

"pressure echo" term, and _ij and _) are near-wall corrections. Zhang (1993) have shown that, to

order x_, the near-wall correction terms are not affected by the presence of the "pressure echo"



term. Therefore,the proposalfor _iY is applicableirrespectiveof whetherthe "pressureecho"

termis includedin themodelingof llij or not. The models for these different terms can now be

generalized for compressible flows as:

R
¢l_ij= 2Cw p K SO (K3/2/ex9 , (12)

_i: = fwl[Cl-p_(zij- _K _i,)- "p_{ru_nkn, + zj,n,ni)+ ot*(Pij- 2"ff8ij)] ,(13)

fw, [-2-_!" _ij + -_'£ ('rij + "rikn_kknj.+ _knt:ni + ninjZ, nkn,)] (14)
L3"" _'g (1 + 3Ztanknl/2K) J '

where P(i = -(P "tik_rj.k + -P _'k_rl.k)represents turbulence production, K = zii/2 is the turbulent

kinetic energy, P" = Pii/2, Sij = _(Ui,i + Uj,i) and Dij =-('p'rikUkj + -p_kUk, i). The

damping function is defined as f,,,1 = exp [-(Re,/150) 2] while the turbulent Reynolds number is

given by Ret = K2/"yr. Unit normal to the wall is denoted by n i and the C's are model constants

whose values are chosen to be the same as those given by Zhang (1993). Furthermore, the model

constants cx1, ]31 and ?'1, are related to a single constant C 2 and the relations are as given by

R
Launder et al. (1975). For ease of reference later on, the second-order model with the term @/j

included is referred to as LRR/WR, while the model with the term q)_ excluded is denoted as

LRR.

The dissipation rate e is decomposed into a solenoidal part and a compressible part so that c

-= es + e.c. These latter terms are defined as: p es = ].lcoicoi, "pEc= /.l Ul..i and coi is the

fluctuating vorticity. The solenoidal dissipation rate is associated with the energy cascade,

therefore, it approaches its incompressible limit correctly. Consistent with Morkovin's hypothesis

(1962), the compressible part of _ is neglected in the present formulation and t; is taken to be given

by es alone. A modeled dissipation-rate equation similar to its incompressible counterpart can be

written for compressible flows as:



-- = + Gel f P - Cg2 pe c_t + (-pC Uk),k ('_ E,k),k + (Ce-p _ Zki E,i), k -_ + _ (15)

The near-wall correcting function _ of Zhang (1993) can be generalized for compressible flows to

give

( -¢ =f'2p'-2_ -¢_+ l'5_--'-'K 1.5CEI (16)

In (16), _ and _ are defined by pe= pe- 2ff(3q-hT/_)x2) 2 and pe : pe- 2-_K/x_,

respectively, and the damping function is given by fw2 = exp [- (Re, / 40)2]. Again, the C's are

model constants and their values specified by Zhang (1993) are adopted.

For the sake of completeness, the model constants used are specified as C 1 = 1.5, C 2 = 0.4

Cel = 1.5, Ce2 = 1.83, C s = O. 11, C e = 0.1, cx* = 0.45 and a I = (8 + C2)/11, fll = (8C2 " 2)/11

and 7'1 = (30C2 - 2)/55. The constant C w is introduced as a result of "pressure echo" modeling in

the velocity-pressure gradient correlation. For compressible flow calculations, a generally valid

relation is given by Zhang et al. (1993) as: C w = (Cw)in - (5.8 x 10-4)M_ for _ > 2.5, where M_

is the free stream Mach number. For Moo < 2.5, C w = (Cw)in, where (Cw)in is given by: (Cw)in =

4.14 x 10 -3 + 3 x 10"3(log Reo) for Re 0 < 5.500 and (Cw)in = 0.0153 for Re 0 > 5,500. Here,

Re o is the momentum thickness Reynolds number. Finally, the boundary conditions for the mean

and turbulent velocity field are given by:

= V = K = "cij = O, g = 2-vw(O'UK-/by) 2 (17)



4. Two-Equation Model for the Temperature Field

In the previous section, a near-wall second-order model is outlined for the velocity field.

Since it is advisable to calculate turbulent heat transfer using a turbulence model of equal or lesser

order, a two-equation model for the temperature field would be most appropriate for the present

work. Therefore, gradient transport is assumed and the ith component of the turbulent heat flux is

given by- Q, =- u,"O = at (_'0 / 3xi), where a t is the eddy thermal diffusivity. Dimensionally,

a t is the product of a velocity scale and a length scale. A characteristic velocity scale for turbulent

flow is K 112. If the interactions between momentum and heat transport are to be modeled properly,

an appropriate length scale would be one given by a combination of K II2 and the time scales of

both the thermal and velocity fields. The time scale characteristic of the thermal field can be

evaluated from the temperature variance 02 and its dissipation rate e 0, while the time scale for the

velocity field is given by K and its dissipation rate & In view of this, the simplest proposal for a t

will be:

a t ---- C_f_,g[g "_ ] EE_ 112 , (18)

where the velocity scale K 1/2 is multiplied by the combined time scale [K 0"_ / e jl12 to give an

appropriate length scale for the definition of a t, C z is a model constant and f;t is a damping

function to be defined. A constant value of C_t = 0.11 has been put forward by Nagano and Kim

(1988) and adopted by Sommer et al. (1992, 1993). Furthermore, C;t = 0.10 has been assumed

by Nagano et al. (1991). In all these calculations, the 0.1 value is found to give good results for

the flow cases tested. Therefore, it is prudent to assume a value not too different from 0.1. For

the present, C z = 0.095 is found to give the best results. As forfz, it has to be parametric in Pr,

otherwise, the model cannot be applied to calculate heat transfer in fluids with vastly different Pr.

In the following, a near-wall model for a t is first discussed, then the appropriate expression forf_.

is presented.

Since K and e are defined by the solution of the modeled equations outlined in the previous

section, a t can be determined by solving two equations governing the transport of 0 2 and e 0. For

10



incompressibleflows, various modeled equations for 0"_ and e 0 have been proposed (Launder

1976). These equations are formulated for high-Reynolds-number flows, therefore, they cannot

be used consistently with other near-wall models. Several near-wall two-equation models have

been put forward by Nagano and Kim (1988), Nagano et al. (1991), Sommer et al. (1992, 1993)

and So and Sommer (1993). One of these models is asymptotically incorrect and gives a zero e0 at

the wall (Nagano and Kim 1988); therefore, it is not consistent with the behavior of the near-wall

turbulence model described above. The other models give asymptotically correct results near a

wall and are appropriate for the present application. With the exception of So and Sommer (1993),

most of the models formulated to-date are, strictly speaking, valid for fluids with Pr = 1. If the

compressible turbulence model for heat transfer is to be general enough for fluids with vastly

different Pr, then the appropriate incompressible model to be adopted for extension to compressible

flow is that proposed by So and Sommer (1993). Therefore, the present approach adopts that

model as a base and proceeds to generalize it for supersonic turbulent flows.

Again, Morkovin's hypothesis (1962) is invoked in order to extend the incompressible

model to compressible flows. Since the incompressible modeled equations for 0 2 and e 0 have

been given by So and Sommer (1993) and their extensions to compressible flows are straight

forward, these equations can be written down without derivation as:

p -- + p Uk-- = P _ + -- C°2P _ _ _xj ] _xk_t _Xk _Xk ] _Xk

Ot OXk

+

_xk _xkl Txk C,op_ e _xjl _1"o +
e`o-

Cd3 _ Puv - Cd4-_ P e`O - Cd5 -'_" P e`O + CeO ,
(20)

where the effects of both thermal (0"_ / e`_)and velocity (K/e.) time scale on the dissipation of 0"_ are

modeled into the e`0 equation. In these equations, a is the mean thermal diffusivity

Po =- pQk (30/3xk} is turbulence production due to mean temperature gradients, Ce0 is a near-

11



wall correcting function, e0 = e0 - _ b /3x2 and the C's are model constants to be

defined later.

If the proposed model is to approach the high-Reynlods-number limit correctly, the model

constants in (19) and (20) cannot differ from conventional values adopted by other researchers. A

generally acceptable set of constants for the C's are given by: Co 2 = 0.11, Ceo = 0.11, Cdl= 1.8,

Ca2 = 0, Cd3 = 0.72, Cd4 = 2.2 and Cd5 = 0.8. In other words, the near-wall correcting

function _e0 has to be determined so that (19) and (20) would approach their high-Reynolds-

number counterparts correctly, i.e. _e0 would asymptote to zero away from a wall. When these

constraints are used to derived _e0 correct to order x 2 near a wall, the following expression is

obtained:

- Co g *

EO Cd5-_e O= fw,eo-P (Can - 4)_0 + - + (2 - Call - Ca'2Pr) /'0 , (21)

where Po is the mean production term in P0due to _9/bxl alone and eo = eo - ot "_/x_. The

presence ofP o is a consequence of the constant wall heat flux boundary condition where b_9 / bx_

is finite. Therefore, the near-wall correcting function is valid for all thermal wall boundary

conditions. A damping function (w,eo = exp [-(Re,/80} 2] is introduced to ensure that the

contribution of _eo would vanish away from the wall. Thus formulated, the model has no new

constants compared to its high-Reynolds-number counterpart.

With the exception of Nagano and Kim (1988), the various damping functions proposed

forfz satisfy the requirement that o_t behave like x_ as a wall is approached. This is consistent

with the exact near-wall behavior of the normal heat flux. If, in addition, the model is to work well

with flows having different Pr, then f_. has to be parametric in Pr. When these requirements are

used to deduce an expression forfz, the following is obtained (So and Sommer 1993):

f;t = Cxx (1 - fzl)/Relt/4 + .fzl , (22)

12



whereCZl is a model constant taken to be parametric in Pr, the damping functionfz / is defined by

f_tl = [1 - exp (- x_ / A+)] 2 , x_ = x2uT/(' is a normal coordinate made dimensionless by the

local length scale v/u, and the model constant A + is also assumed to be parametric in Pr. The

friction velocity u_ is defined as (_ / p-)_a. Typically, for flows with Pr = 1, the values for C;t 1

and A ÷ are 0.1 and 40, respectively. Their variations with Pr have been determined by So and

Sommer (1993) and are given by: A ÷ = lO/Pr for Pr < 0.25 and A ÷ = 39/Pr 1_ for Pr > 0.25;

C_ = 0.4/Pr 1_ for Pr < 0.1 and Cxl = O.07/Pr for Pr > 0.1.

Finally, the wall boundary conditions for the temperature field and _ and e 0 can be stated

as follows. At the wall, the thermal boundary conditions can either be adiabatic or constant

- - 47temperature, while 0 2 - 0 and leon, = a O /Ox2 are appropriate for both thermal wall

boundary conditions.

13



5. Results and Discussion

The ability of the near-wall models to calculate heat transfer in fluids with widely different

Pr is illustrated first. In these calculations, fully-developed pipe and channel flows with adiabatic

and constant wall temperature boundary conditions are considered. Therefore, the governing

equations outlined above can be reduced to ordinary differential equations and solved fairly easily

by some standard numerical techniques, such as Newton iteration or relaxation methods. Both

high and low Reynolds-number flows are calculated and compared with measurements and direct

numerical simulation (DNS) data. Some sample comparisons are shown here. These are the

comparisons with the empirical temperature log-law of Kader (1981) and with the DNS data of

Kim and Moin (1989).

In Kader's (1981) study, an empirical temperature log-law is proposed after careful

analysis of numerous temperature measurements in pipe and channel flows with widely different

Pr. The resultant log-law is found to correlate well with measurements over a broad range of

Reynolds number and Pr. Since a more careful comparison with this empirical log-law has been

given by So and Sommer (1993), only a representative comparison in the Pr range 10 < Pr < 100

is shown in Fig. 1. In this figure, 0 ÷ = _9/O,, y+ = y u,/v,y is the normal coordinate to the

wall and O r is the friction temperature. The model calculations are in very good agreement with

Kader's temperature log-law. Such good agreement extends to Pr as low as 0.025 and as high as

103. A sample comparison with low-Reynolds-number channel flows is carded out with the

constant wall temperature DNS data of Kim and Moin (1989). The Reynolds number based on u r

is 180 and three different values of Pr are investigated. These are: Pr = 0.1, 0.71 and 2. The

velocity field comparisons have been given by So and Sommer (1993) and the results are in good

agreement with DNS data. Here, only the comparisons with O + and 0,,,_ = (b--_)z_/O,, the root-

mean square temperature variance, are shown in Figs. 2 and 3, respectively. It can be seen that the

calculated mean temperature profiles agree well with DNS data and their dependence on Pr is

modeled correctly (Fig. 2). A slight discrepancy exists in the prediction of the maximum Orms and

14



this is mostnotablefor thecasewhere Pr = 2 (Fig. 3). In general, the heat transfer model gives

good predictions of incompressible flows with widely different Pr.

The compressible flow calculations are compared with the measurements of Fernholz and

Finley (1977) and Kussoy and Horstman (1991) and the constant Pr t model of Zhang et al.

(1993). This way, the validity of the constant Pr t assumption for compressible flows can be

examined. Measurements obtained under both adiabatic and cooled wall boundary conditions are

considered. In this preliminary attempt, all calculated cases are limited to flat plate boundary layers

only, while attempts to calculate complex supersonic flows will be discussed in a subsequent

report. Two adiabatic cases are chosen from Fernholz and Finley (1977). The free-stream Mach

numbers of these two cases are M** = 2.244 and 10.31, while the corresponding momentum

thickness Reynolds number, R o, are 20,797 and 15,074, respectively. In addition to mean

velocity, wall friction is also reported. Therefore, the comparisons are made with the mean

velocity profiles in semi-log plots of U ÷ versus In y¢, where U ÷ = Ulu, and y_ = y u,/vw.

Calculations are made of the skin friction coefficient, C/ = 2_ / p"-. U 2. and the heat transfer

coefficient, Ch = qw/p-U. _ (O_ - O_), where q w is the wall heat flux. Furthermore,

comparisons are made with the mean temperature profiles in the form of _9 / O_ .versus y / tS, where

O,,o is the freestream temperature and d_is the measured boundary-layer thickness. However, these

are not independent comparisons because the temperature profiles are inferred from the measured

velocity profiles by assuming constant total enthalpy and pressure across the boundary layers. In

order to verify the present heat transfer model, comparisons with supersonic cooled wall boundary

layers are carried out. Only one case is presented and this has a wall temperature ratio Ow/Oaw =

0.3. The data is extracted from Kussoy and Horstman (1991). The corresponding M,,,, and R o are

3,939 and 4,600, respectively. Since the measurements of velocity and termperature are obtained

independently, the performance of the compressible heat transfer model can be evaluated. Again,

the skin friction coefficient and the heat transfer coefficient are calculated and compared with

measurements.
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Comparisonswith the caseswhereanadiabaticwall boundarycondition is specifiedare

presentedfirst. Theseresultsareshownin Figs.4 - 7. Only themeanvelocity (Figs.4 and6)and

meantemperature(Figs.5 and7 ) profiles arecompared.The measuredvelocity profilescanbe

correlatedby thelog-law (Zhangetal. 1992a)

U ÷ = llny_ + B (23)
/¢

where tcis the von Karman constant. At low Mach numbers, the log-law with _c= 0.41 and B =

4.3 correlates well with data and model calculations (see log-law plotted in Fig. 4). As Mach

number increases, B decreases with Mach numbers and at Moo = 10.31, the B value determined

from the present model is 3.35 while that from the constant Pr t model is 3.8. Both models give the

same von Karman constant, i.e. I¢= 0.41. However, the present model yields a longer range log-

law compared to the constant Pr t model and is more consistent with measurements (see the log-

laws plotted in Fig. 6). Therefore, the B value thus determined is more reliable (Fig. 6). As for

the temperature comparison (Figs. 5 and 7), again, there is little difference between the two model

predictions at low Mach numbers. At M,,, = 10.31, there is a slight discrepency between the

present model and that of the constant Pr t model in the region bounded by 0.1 < y/t5 < 0.5. It

seems that the present model over-predicts the mean temperature in this region. Since the mean

temperature data are inferred from the mean velocity measurements and the assumption of constant

total enthalpy, it follows that a high measured velocity would lead to a low temperature estimation.

The measured velocities seem to be high compared to the log-law in this region, therefore, the

inferred temperatures are low. Measurements ofCf x 10 -3 for the M_, = 2.244 and 10.31 cases are

1.62 and 0.24, respectively. The corresponding values determined from the constant Pr t model of

Zhang et al. (1993) are 1.69 and 0.24, while the present model gives 1.71 and 0.24, respectively.

As far as the prediction of Cf is concerned, both models are quite good. In other words, the

integral boundary-layer parameters are not as much affected by the model used to calculate the

flow.
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Thecooledwall resultsarecomparedin Figs. 8and9. It hasbeendemonstratedby Zhang

et al. (1992) that the von Karman constant changes as the wall temperature ratio decreases.

Furthermore, B also varies as @w/@aw decreases. The same behavior is predicted by the constant

Pr t model and the present model. When @wl@aw decreases to 0.3, the x'and B values determined

from the model calculations are: 0.29 and 2.87 from the present model and 0.29 and 3.74 from the

constant Pr t model (see the log-laws plotted in Fig. 8), respectively. It is difficult to say which set

of values agrees better with measurements. However, as before, the present model yields a longer

range of log-law compared to the constant Pr t model and is consistent with the measurements. In

view of this, it can be said that the set of values determined from the present model is more

reliable. There is little difference in the predicted mean temperature at low values of Ow/O)aw. As

6)w/_gaw decreases to 0.3, a slight discrepency exists between the model predictions in the region

bounded by 0.1 < y/8 < 0.5 (Fig. 9), which is the same as observed in the Moo = 10.31 case with

an adiabatic wall boundary condition. This time, the mean temperatures are measured

independently and they seem to agree better with the predictions of the constant Pr t model. The

measured Cfx 10 -3 and C h x 10 -3 for the Moo = 8.18 case are 0.98 and 0.53, respectively, while

the corresponding calculated values are 0.95 and 0.57 from the constant Pr t model and 0.99 and

0.60 from the present model. It can be seen that there is an improvement in the prediction of Cfbut

a deterioration in the calculation of C h when the present model is used to simulate the temperature

field. However, according to Kussoy and Horstman (1991), the measurement of C h is not as

accurate as that of Cf. Therefore, it might turn out that there is no deterioration in the prediction of

C h after all.

Finally, some sample plots of the temperature variance _ and turbulent Prandtl number Pr t

are shown in Figs. 10 and 11, respectively. The root mean square temperature variance

normalized by (O w - _,_) is shown in Fig. 10. It can be seen that, as Moo increases, the maximum

0 2 increases. The same is true when Ow/Oaw decreases; however, the increase is substantially

larger than that due to Mach number enhancement. Therefore, these results indicate that

temperature fluctuations are promoted by compressibility and most significantly by wall cooling.
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The calculatedPr t is not constant across the boundary layers (Fig. 11). For an adiabatic wall

boundary condition, the calculated Pr t reaches a maximum of about 2 at the wall and decreases

rapidly to about 1.5 in the region 4 < y,," < 8. Thereafter, Pr t continues to decrease towards the

edge of the boundary layer. Essentially the same trend is followed by the M** = 2.244 case, except

that the level is lower. On the other hand, Pr t has a value of about 1.1 at the wall for the cooled

wall case. Its value decreases to a minimum at y_ = 6 and then rises to a maximum of about 1.7 at

y_+= 20. At the edge of the boundary layer, the value of Pr t is about 1.0, which is substantially

higher than the values attained in the adiabatic wall cases. The constant Pr t model calculations

show that, irrespective of the fact that Pr t varies significantly across the boundary layers, a

constant value of 0.9 yields mean flow results that are as good as the present model. As for the

turbulence statistics, no reliable data is available for comparisons. Therefore, the merit of the

present model versus that of constant Pr t cannot be commented on in this work.
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6. Conclusions

A two-equationturbulencemodel for the temperaturefield is proposedfor supersonic

flows. The model equationsarederived directly from their incompressiblecounterpartsby

invoking Morkovin's hypothesis,where it is postulatedthat compressibility effects could be

accountedfor by thevariationsof meandensityalone. An eddythermaldiffusivity is assumedand

it is determinedfrom thetemperaturevarianceandits dissipationrate,whosetransportequations

aremodeledandsolvedin thepresentapproach.The eddythermaldiffusivity is takento be the

productof aturbulencevelocity scaleandalengthscale. It is furtherassumedthattheturbulence

velocity scaleandanappropriatelydefinedtime scalecanbeusedto definethelengthscale.Both

thermalandvelocitytime scalesareusedto determinetheappropriatetimescale.This is necessary

becausetheinteractionsof thevelocity andtemperaturefields haveto beaccountedfor properly.

The present approach invokes a second-order compressible turbulence model for the velocity field.

The model equations are applied to study supersonic flows with freestream Mach numbers and

wall temperature ratios that vary from 2.244 to 10.31 and 0.3 to 1.0, respectively. In calculating

these supersonic flows, real gas effects are neglected. The calculated results are compared with

measurements covering the same range of Mach numbers and wall temperature ratios. A similar

model assuming the turbulent Prandtl number to be 0.9 is used to calculate the test cases and the

results compared with the variable Pr t model calculations and measurements.

The two model calculations yield results that are in good agreement with measurements.

One possible difference is in the prediction of the range of the log-law. The present model predicts

a longer range for all test cases examined compared to the constant Pr t model. In the test cases

studied, the longer log-law range seems to be more consistent with measurements. Thus

compared, the constant Pr t assumption is found to be valid for the range of Mach numbers and

wall temperature ratios investigated. On the other hand, compared to the constant Pr t calculations,

the present model over-predicts slightly the mean temperature in the range 0 < y/t5 < 0.5 at high

Mach numbers and low wall temperature ratios. Consequently, the relative merits of the present
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modelandtheconstantPrtmodelhaveto befurtheranalysedbycomparingthecalculationswith

accuratelymeasuredturbulencestatistics,whicharepresentlylacking.
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