20,747 research outputs found

    Omnidirectional Sensory and Motor Volumes in Electric Fish

    Get PDF
    Active sensing organisms, such as bats, dolphins, and weakly electric fish, generate a 3-D space for active sensation by emitting self-generated energy into the environment. For a weakly electric fish, we demonstrate that the electrosensory space for prey detection has an unusual, omnidirectional shape. We compare this sensory volume with the animal's motor volume—the volume swept out by the body over selected time intervals and over the time it takes to come to a stop from typical hunting velocities. We find that the motor volume has a similar omnidirectional shape, which can be attributed to the fish's backward-swimming capabilities and body dynamics. We assessed the electrosensory space for prey detection by analyzing simulated changes in spiking activity of primary electrosensory afferents during empirically measured and synthetic prey capture trials. The animal's motor volume was reconstructed from video recordings of body motion during prey capture behavior. Our results suggest that in weakly electric fish, there is a close connection between the shape of the sensory and motor volumes. We consider three general spatial relationships between 3-D sensory and motor volumes in active and passive-sensing animals, and we examine hypotheses about these relationships in the context of the volumes we quantify for weakly electric fish. We propose that the ratio of the sensory volume to the motor volume provides insight into behavioral control strategies across all animals

    Foreword

    Get PDF
    The symposium in this issue of the San Diego Law Review originated in a conference held in the spring of 1984, designed by the Graduate Tax Program of USD\u27s Law School as a vehicle for discussion of all aspects of the Finance Committee staff report and the reforms of the tax system it authors had recommended. Noted tax experts were invited to participate in a high level policy analysis and discussion, and the co-chairs of the conference were indeed lucky to have attracted a singularly impressive group of speakers

    Significant reduction in arc frequency biased solar cells: Observations, diagnostics, and mitigation technique(s)

    Get PDF
    A variety of experiments were performed which identify key factors contributing to the arcing of negatively biased high voltage solar cells. These efforts have led to reduction of greater than a factor of 100 in the arc frequency of a single cell following proper remediation procedures. Experiments naturally lead to and focussed on the adhesive/encapsulant that is used to bond the protective cover slip to the solar cell. An image-intensified charge coupled device (CCD) camera system recorded UV emission from arc events which occurred exclusively along the interfacial edge between the cover slip and the solar cell. Microscopic inspection of this interfacial region showed a bead of encapsulant along this entire edge. Elimination of this encapsulant bead reduced the arc frequency by two orders of magnitude. Water contamination was also identified as a key contributor which enhances arcing of the encapsulant bead along the solar cell edge. Spectrally resolved measurements of the observable UV light shows a feature assignable to OH(A-X) electronic emission, which is common for water contaminated discharges. Experiments in which the solar cell temperature was raised to 85 C showed a reduced arcing frequency, suggesting desorption of H2O. Exposing the solar cell to water vapor was shown to increase the arcing frequency. Clean dry gases such as O2, N2, and Ar show no enhancement of the arcing rate. Elimination of the exposed encapsulant eliminates any measurable sensitivity to H2O vapor

    Effect of surface tension on the growth mode of highly strained InGaAs on GaAs(100)

    Full text link
    We have investigated the molecular beam epitaxy growth of highly strained InGaAs on GaAs(100) as a function of the anion to cation flux ratio. Using reflection high energy electron diffraction the evolution of the film morphology is monitored and the surface lattice constant is measured. It is found that the cation to anion flux ratio dramatically affects the growth mode. Under arsenic‐rich conditions, growth is characterized by a two‐dimensional (2D) to three‐dimensional (3D) morphological transformation. However, for cation‐stabilized conditions, 3D islanding is completely suppressed, and 2D planar growth is observed. We associate these differences in the growth mode with corresponding changes in the surface tension of the overlayer. A high surface tension stabilizes 2D growth. An analysis which relates surface tension to a critical thickness for the onset of coherent island formation supports this view.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70295/2/APPLAB-62-1-46-1.pd

    Interplay between geometry and flow distribution in an airway tree

    Full text link
    Uniform fluid flow distribution in a symmetric volume can be realized through a symmetric branched tree. It is shown here, however, that the flow partitioning can be highly sensitive to deviations from exact symmetry if inertial effects are present. This is found by direct numerical simulation of the Navier-Stokes equations in a 3D tree geometry. The flow asymmetry is quantified and found to depend on the Reynolds number. Moreover, for a given Reynolds number, we show that the flow distribution depends on the aspect ratio of the branching elements as well as their angular arrangement. Our results indicate that physiological variability should be severely restricted in order to ensure uniform fluid distribution in a tree. This study suggests that any non-uniformity in the air flow distribution in human lungs should be influenced by the respiratory conditions, rest or hard exercise

    Codeless GPS Applications to Multi-Path: CGAMP

    Get PDF
    Cordless Global Positioning System (GPS) Applications to Multi-Path (CGAMP) is meeting the challenge of exploiting the L-band signals from the Global Positioning System (GPS) satellites for the measurement of the impulse response of radio transmission channels over space-Earth paths. This approach was originally suggested by E. K. Smith and has been pursued by J. Lemmon, without an affordable implementation being identifiable. In addition to the high cost of a suitable P code correlating GPS receiver, there is also the major impediment of the often announced Department of Defense policy of selective availability/anti-spoof (SA/AS) that clouds reliable access to the wideband (20 MHz) P channel of the GPS signals without cryptographic access. A technique proposed by MacDoran utilizes codeless methods for exploiting the P channel signals implemented by the use of a pair of antennas and cross correlation signal detection

    A combined molecular‐beam epitaxy and scanning tunneling microscopy system

    Full text link
    A combined molecular‐beam epitaxy and scanning tunneling microscopy system has been constructed. The design has been optimized for the study of III‐V semiconductors with the goal of examining the surface with both in situ scanning tunneling microscopy (STM) and reflection high‐energy electron diffraction (RHEED). Using this system, it is possible to quench the growth and produce real‐space images of the surface as it appeared during deposition. Measurements obtained with both RHEED and STM are presented.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70399/2/RSINAK-62-6-1400-1.pd

    Carbon/graphite fiber risk analysis and assessment study: An assessment of the risk to Douglas commercial transport aircraft

    Get PDF
    The potential hazard to electrical and electronic devices should there be a release of free carbon fibers due to an aircraft crash and fire was assessed. Exposure and equipment sensitivity data were compiled for a risk analysis. Results are presented in the following areas: DC-9/DC-10 electrical/electronic component characterization; DC-9 and DC-10 fiber transfer functions; potential for transport aircraft equipment exposure to carbon fibers; and equipment vulnerability assessment. Results reflect only a negligible increase in risk for the DC-9 and DC-10 fleets either now or projected to 1993
    corecore