2,138 research outputs found

    Precursor-mediated crystallization process in suspensions of hard spheres

    Full text link
    We report on a large scale computer simulation study of crystal nucleation in hard spheres. Through a combined analysis of real and reciprocal space data, a picture of a two-step crystallization process is supported: First dense, amorphous clusters form which then act as precursors for the nucleation of well-ordered crystallites. This kind of crystallization process has been previously observed in systems that interact via potentials that have an attractive as well as a repulsive part, most prominently in protein solutions. In this context the effect has been attributed to the presence of metastable fluid-fluid demixing. Our simulations, however, show that a purely repulsive system (that has no metastable fluid-fluid coexistence) crystallizes via the same mechanism.Comment: 4 figure

    Elephant Grass

    Get PDF
    Elephant Grass, sometimes known as Napier\u27s Fodder, is a hardy, palatable and nutritious plant which under good conditions will give heavy yields. When once established it will remain as a permanent stand so long as it receives good treatment. It grows well in many parts of Western Australia and up to date appears to be free from attack by pests and diseases. * (Revised from Leaflet No. 600, by H. G. Elliott

    Towards a method for rigorous development of generic requirements patterns

    No full text
    We present work in progress on a method for the engineering, validation and verification of generic requirements using domain engineering and formal methods. The need to develop a generic requirement set for subsequent system instantiation is complicated by the addition of the high levels of verification demanded by safety-critical domains such as avionics. Our chosen application domain is the failure detection and management function for engine control systems: here generic requirements drive a software product line of target systems. A pilot formal specification and design exercise is undertaken on a small (twosensor) system element. This exercise has a number of aims: to support the domain analysis, to gain a view of appropriate design abstractions, for a B novice to gain experience in the B method and tools, and to evaluate the usability and utility of that method.We also present a prototype method for the production and verification of a generic requirement set in our UML-based formal notation, UML-B, and tooling developed in support. The formal verification both of the structural generic requirement set, and of a particular application, is achieved via translation to the formal specification language, B, using our U2B and ProB tools

    How hard is a colloidal 'hard-sphere' interaction?

    Get PDF
    Poly-12-hydroxystearic acid (PHSA) is widely used as a coating on colloidal spheres to provide a "hard-sphere-type" interaction. These hard spheres have been widely used in fundamental studies of nucleation, crystallization, and glass formation. Most authors describe the interaction as "nearly" hard sphere. In this paper we directly measure this interaction, using layers of PHSA adsorbed onto mica sheets in a surfaces force apparatus. We find that the layers, in appropriate solvents, have no long-range interaction. When the solvent is decahydronaphthalene (decalin), the repulsion rises from zero to the maximum measurable over a distance range of 15-20 nm. The data is converted to equivalent forces between spheres of different diameters, and modeled using a hard core potential. Using zeroth-order perturbation theory and computer simulation, we demonstrate that the equation of state does not deviate from that of a perfect hard-sphere system under any relevant experimental conditions

    New Langevin and Gradient Thermostats for Rigid Body Dynamics

    Get PDF
    We introduce two new thermostats, one of Langevin type and one of gradient (Brownian) type, for rigid body dynamics. We formulate rotation using the quaternion representation of angular coordinates; both thermostats preserve the unit length of quaternions. The Langevin thermostat also ensures that the conjugate angular momenta stay within the tangent space of the quaternion coordinates, as required by the Hamiltonian dynamics of rigid bodies. We have constructed three geometric numerical integrators for the Langevin thermostat and one for the gradient thermostat. The numerical integrators reflect key properties of the thermostats themselves. Namely, they all preserve the unit length of quaternions, automatically, without the need of a projection onto the unit sphere. The Langevin integrators also ensure that the angular momenta remain within the tangent space of the quaternion coordinates. The Langevin integrators are quasi-symplectic and of weak order two. The numerical method for the gradient thermostat is of weak order one. Its construction exploits ideas of Lie-group type integrators for differential equations on manifolds. We numerically compare the discretization errors of the Langevin integrators, as well as the efficiency of the gradient integrator compared to the Langevin ones when used in the simulation of rigid TIP4P water model with smoothly truncated electrostatic interactions. We observe that the gradient integrator is computationally less efficient than the Langevin integrators. We also compare the relative accuracy of the Langevin integrators in evaluating various static quantities and give recommendations as to the choice of an appropriate integrator.Comment: 16 pages, 4 figure

    Asymptotic analysis for the generalized langevin equation

    Full text link
    Various qualitative properties of solutions to the generalized Langevin equation (GLE) in a periodic or a confining potential are studied in this paper. We consider a class of quasi-Markovian GLEs, similar to the model that was introduced in \cite{EPR99}. Geometric ergodicity, a homogenization theorem (invariance principle), short time asymptotics and the white noise limit are studied. Our proofs are based on a careful analysis of a hypoelliptic operator which is the generator of an auxiliary Markov process. Systematic use of the recently developed theory of hypocoercivity \cite{Vil04HPI} is made.Comment: 27 pages, no figures. Submitted to Nonlinearity

    Experimental sexual selection reveals rapid evolutionary divergence in sex-specific transcriptomes and their interactions following mating

    Get PDF
    Work was supported by the Natural Environment Research Council (NE/I014632/1 to M.G.R., A.R.C., and R.R.S), the Natural Environment Research Council Biomolecular Analysis Facility (NBAF654 to M.G.R), and the Swedish Research Council (Vetenskapsrådet; 2018-04598 to R.R.S).Postcopulatory interactions between the sexes in internally fertilizing species elicits both sexual conflict and sexual selection. Macroevolutionary and comparative studies have linked these processes to rapid transcriptomic evolution in sex-specific tissues and substantial transcriptomic postmating responses in females, patterns of which are altered when mating between reproductively isolated species. Here we test multiple predictions arising from sexual selection and conflict theory about the evolution of sex-specific and tissue-specific gene expression and the postmating response at the microevolutionary level. Following over 150 generations of experimental evolution under either reduced (enforced monogamy) or elevated (polyandry) sexual selection in Drosophila pseudoobscura, we found a substantial effect of sexual selection treatment on transcriptomic divergence in virgin male and female reproductive tissues (testes, male accessory glands, the female reproductive tract and ovaries). Sexual selection treatment also had a dominant effect on the postmating response, particularly in the female reproductive tract ? the main arena for sexual conflict - compared to ovaries. This effect was asymmetric with monandry females typically showing more postmating responses than polyandry females, with enriched gene functions varying across treatments. The evolutionary history of the male partner had a larger effect on the postmating response of monandry females, but females from both sexual selection treatments showed unique patterns of gene expression and gene function when mating with males from the alternate treatment. Our microevolutionary results mostly confirm comparative macroevolutionary predictions on the role of sexual selection on transcriptomic divergence and altered gene regulation arising from divergent coevolutionary trajectories between sexual selection treatments.Publisher PDFPeer reviewe

    A furnace and environmental cell for the in situ investigation of molten salt electrolysis using high-energy X-ray diffraction

    Get PDF
    This paper describes the design, construction and implementation of a relatively large controlled-atmosphere cell and furnace arrangement. The purpose of this equipment is to facilitate the in situ characterization of materials used in molten salt electrowinning cells, using high-energy X-ray scattering techniques such as synchrotron-based energy-dispersive X-ray diffraction. The applicability of this equipment is demonstrated by quantitative measurements of the phase composition of a model inert anode material, which were taken during an in situ study of an operational Fray-Farthing-Chen Cambridge electrowinning cell, featuring molten CaCl(2) as the electrolyte. The feasibility of adapting the cell design to investigate materials in other high-temperature environments is also discussed
    corecore