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Velocity Autocorrelation Functions of Hard-Sphere Fluids: Long-Time Tails upon Undercooling
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Molecular dynamics simulations are employed to obtain the velocity autocorrelation function (VAF) for
hard spheres, spanning a wide range of volume fractions from dilute to high-density metastable fluids. For
all volume fractions below freezing, Alder’s classical positive 3=2 long-time tail is observed. For volume
fractions from 0.45 to 0.48 the VAF becomes negative, before becoming positive and decaying with the
positive 3=2 long-time tail. At the freezing volume fraction (0.494) the Alder 3=2 tail is not observed. At
higher volume fractions a negative tail with an exponent of 5=2 emerges, which coincides with the long-
time tail of a Lorentz gas.
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One of the simplest statistical measures of atomic mo-
tion is the mean-squared displacement (MSD), h�r2

i i, con-
structed from the displacements �r2

i in a time interval
averaged over an ensemble of atoms. When the motion is
ballistic the MSD grows quadratically with �, whereas for
diffusive motion the MSD grows linearly with �. A related
and widely used statistical measure is the velocity auto-
correlation function (VAF), Z���, defined by Ref. [1],
Z��� � 1

3 hvi��� � vi�0�i � 1
6 �d

2=d�2�h�r2
i i. The depen-

dence of the VAF on delay time more readily exposes
motion that is neither ballistic nor diffusive. In this way
Z��� gives a direct measure of the memory, or delay,
associated with the disturbance created in the surrounding
atomic fluid by the motion of an atom.

On the basis of Boltzmann’s idea of uncorrelated binary
collisions between the atoms in a fluid, one expects the
VAF to decay exponentially with � [1]. However, this no-
tion was challenged with the discovery, in some of the ear-
liest computer simulations, that Z��� decays algebraically
at long delay times [2]. The shortcoming of the kinetic
theory, as pioneered by Boltzmann, is that it fails to ac-
count for sequences of correlated collisions [3]. The cir-
cularity of such sequences, manifested in the continuum by
a double vortex, gives a delayed impetus to an atom’s
initial velocity. While they may be rare, these sequences
do occur and, moreover, they are the mechanism by which
the transverse momentum diffuses. It is now well estab-
lished [3–5] that, when fully developed, the influence of
viscous flow is manifested by an algebraic decay of the
VAF from above in proportion to ��3=2, i.e., Z��� �
A��3=2 where A is the positive amplitude. Elastic modes
will also affect how the VAF decays; such modes encom-
pass (i) short wavelength propagating modes which, given
the speed of sound in dense fluids, make no significant
contribution to the VAF over the delay times associated
with the development of the vorticity; and (ii) damped,
long wavelength modes which incur delayed reversals of
the atoms velocities [5–8].
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As to the existence and origin of the so-called ��3=2

‘‘hydrodynamic tail,’’ experiment [9,10], computer simu-
lation [2,5–7,11,12], and theory [3,4] are in complete
accord. It has also been observed in both computer simu-
lation [5,6] and experiment [13,14] that at high density the
long wavelength longitudinal modes cause the VAF to
become negative at intermediate delay times. However,
there is no statistically compelling computer evidence to
establish whether the VAF decays to zero from above or
below at larger values of � under these conditions. A
related question that is possibly more interesting and im-
portant is whether elastic modes and viscous flow change
their respective contribution or their character as the fluid
is compressed or cooled beyond its freezing point.

To address these questions we have performed molecu-
lar dynamics computer simulations on a system of hard
spheres. The new physics exposed by these computations is
achieved in three ways: first by using a larger number of
atoms and running the calculations longer than in previous
work; second, by averaging a large number of simulation
runs with different starting configurations; and third by
using a coarse quasilogarithmic time scale.

The hard-sphere system has proved to be a valuable
reference for the liquid state, and its equilibrium properties
are well-known. In particular, it has been observed, in
computer simulation [15] and experiment [16], that the
system of hard spheres has a first order fluid to crystal
transition; the fluid and (fcc) crystal coexist with the nomi-
nal volume fractions�f � 0:494 and�m � 0:545, respec-
tively. Of course once the volume fraction exceeds, �f,
i.e., once the hard-sphere fluid is under-cooled, it crystal-
lizes [16,17] and it does so with increasing speed as the
degree of under-cooling increases [18]. For the under-
cooled fluids we used an equimolar binary mixture of equal
mass with a size ratio of 0.905, which has nominal freezing
and melting volume fractions of �f � 0:506 and �m �

0:548 [18]. This serves to delay the onset of crystallization
long enough to observe the metastable fluid’s dynamical
1-1 © 2006 The American Physical Society
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FIG. 1 (color online). A plot of the velocity autocorrelation
function Z��� versus log� (symbols are defined in the legend),
calculated from one component hard-sphere molecular dynamics
simulations of fluids at various volume fractions � � (volume
of all the spheres divided by the total system volume). For � �
0:45 the VAF becomes negative, so in order to expose the long-
time behavior, double logarithmic plots of jZ���j are needed (see
Fig. 2).
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FIG. 2 (color online). A double logarithmic plot of jZ���j for
the data shown in Fig. 1. For all curves below �f � 0:494 a
long-time 3=2 power law (indicated by the dashed line) is clearly
observed. As the volume fraction increases a nonmonotonic
decay emerges as may be seen distinctly from the curve. We
interpret this as indicative of the fluids strengthening visco-
elastic behavior. For � � 0:45, the points where Z��� cross
zero may be seen as a sharp minimum in this graph. For � �
0:45 and � � 0:48 a second sharp minimum is observed [Z���
has crossed zero again and now becomes positive], followed by a
long-time 3=2 tail. Upon increasing the volume fraction to � �
0:494 and � � 0:505 this reentrant positive behavior is no
longer observed.
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behavior. In essence, to a good approximation the phase
behavior of the binary or polydisperse system can be
mapped onto that of a single component system. In a sense,
this binary hard-sphere fluid is analogous to a colloidal
fluid of hard spheres with a polydispersity of 5%. Experi-
ments on colloidal systems have shown that a modest de-
gree of polydispersity causes a significant delay in crystal-
lization without having a significant effect on dynamical
properties such as the time correlation functions [19].

The data presented here was computed from simulations
consisting of N � 10 976 particles. To check for finite size
effects we repeated the calculations of the VAF at the
highest � � 0:58 and lowest � � 0:15 volume fractions
with N � 5� 105 particles. There was no discernible sys-
tematic difference in the results for the two system sizes.
We also calculated the speed of sound from the equation of
state [20], which showed that finite size effects should be
most important for the lowest volume fraction studied. For
the larger N � 5� 105 system it was found that a low fre-
quency disturbance could not cross the periodic cell length
on the longest time scale in our VAF calculations, regard-
less of volume fraction. Thus there can be little doubt that
the results presented here are accurately representative of
what would be obtained in the thermodynamic limit.

The VAFs were computed from 50 independent simula-
tions, with a standard error in the region of the long-time
tails of 4�10�5, except those at the volume fractions
shown in Fig. 4, which were computed from ensembles
of 500 independent simulations, with a standard error of
1:5� 10�5.

Figure 1 shows the VAF versus log� for the one compo-
nent fluid at several volume fractions in thermodynamic
equilibrium (�<�f), at the freezing volume fraction
(���f) and at a volume fraction for a marginally under-
cooled fluid (�>�f). The units used are such that the
mean-squared thermal velocity, Z�0� � kBT=m � 1 and
the time unit is �

���������������
m=kBT

p
where T is the absolute tem-

perature, � is the atomic diameter, m is the atomic mass,
and kB is Boltzmann’s constant. From this plot it can be
seen that the VAF becomes negative for � � 0:45.

In order to examine the long-time behavior, the data is
replotted in Fig. 2 as a double logarithmic plot of jZ���j
versus �. From this figure it is clear that Z��� decays from
the mean-squared thermal velocity, a condition imposed by
definition, to an algebraic form consistent with ��3=2, for
all volume fractions below the freezing point, � � 0:494.
Thus, time coarse graining exposes a continuous and
smooth crossover from ballistic motion to fully developed,
viscous flow. The dip that becomes apparent for �> 0:3
manifests velocity reversal incurred by damped compres-
sion modes, i.e., a transient visco-elastic response [8]. This
transient response increases in strength with volume frac-
tion and, for � � 0:45, it causes Z��� to become negative,
i.e., the velocities become anticorrelated at intermediate
times. But even then Z��� crosses the abscissa again and
decays to zero from above in a manner consistent with the
08780
power law, ��3=2. Thus, for the fluid in thermodynamic
equilibrium the data indicates that the fluid’s delayed
inelastic, viscous response to a thermally activated distur-
bance ultimately dominates, whatever the strength of its
transient elastic response. This provides confirmation of
what had previously only been conjectured [8,21].

The data in Fig. 2 suggests that there is a qualitative
change in behavior as the freezing point is approached, and
1-2
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this is also evident in the ��3=2 tail. Although the time scale
on which the ��3=2 tail emerges does not change, the
magnitude of the amplitude decreases dramatically, as
shown in Fig. 3. Here we see that just below freezing the
magnitude of the amplitude scales as A	 ����f�

1:5,
which indicates that the amplitude goes to zero as the
volume fraction approaches freezing.

In order to look more closely at the behavior near the
freezing point, Fig. 4 shows the VAFs on a semilog scale
for volume fractions just below freezing (0.480), at freez-
ing (0.494), and just above freezing (0.505). At 0.48, the
VAF recrosses the axis, as described above. However, at
� � 0:494, Z��� decays to zero from below by way of
what appears to be an exponential function of delay time
and a second crossing of the abscissa cannot be discerned
from the noise. Moreover, at a volume fraction slightly
above �f, � � 0:505, this decay appears slower than
exponential, indicating the onset of a negative long-time
tail.

The result for� � 0:505 confirms that the second cross-
ing point of the VAF disappears, as far as can be ascer-
tained from our data, at �f, and the VAF finally decays to
zero from below for this volume fraction. In order to
quantify this decay we need to undercool more deeply
(i.e., go to higher volume fractions) which requires the
use of the binary mixture [18].

In order to demonstrate the dynamical equivalence of the
two systems, and highlight the fundamental change that
our data shows upon traversal of the freezing transition, the
VAFs for volume fractions from just below to just above
this transition for the binary system are also shown in
Fig. 4. As for the single component system, the volume
fraction just below freezing (0.494) shows a second cross-
ing point. However, there is no second crossing point
observed for the freezing volume fraction (0.506) or that
just above freezing (0.513). This representation clearly
FIG. 3. Log-log plot of the amplitude A, as defined in the
legend, as a function of j�f ��j. The one component data is
below freezing �f � 0:494 and the binary data is above freezing
�f � 0:506. The solid line is a fit to the one component data
A � 0:19��f ���

1:5, which goes to A � 0 at freezing.
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demonstrates the fundamental nature of the change and
shows that it applies for both the single component and the
binary systems.

Having established that there is a fundamental change at
or very close to the freezing volume fraction for both the
single component and binary systems, we can now explore
the under-cooled region more deeply. The VAFs for the
under-cooled binary fluid as a function of volume fraction
are shown in Fig. 5. By contrast to the equilibrium fluid, the
VAFs for the under-cooled fluid all remain negative and
decay to zero from below in a manner that can be described
by the power law, ���, with� � 2:5. The exponent has no
significant volume fraction dependence while the ampli-
tude of the power law has only a weak one. The most
significant aspect of the data shown in Fig. 5 is that there is
no evidence in the dynamical window of the reemergence
of a positive algebraic decay, i.e., of fully developed vor-
ticity. These results demonstrate a qualitative difference in
dynamics between a thermodynamic equilibrium and
metastable fluids.

A negative power-law decay has also been observed
recently for an under-cooled colloidal fluid of hard spheres
suspended in a liquid [13,14]. The difference between
those results and the results presented here for the fluid
of ballistic hard spheres is that the power-law index was
found to be about � � 1:5, and was weakly volume frac-
tion dependent. Negative long-time tails for the VAF have
also been found in the studies of fluids in confined geome-
tries [22], where the development of vorticity is impaired,
and longitudinal modes beyond a certain wavelength are
over-damped. Moreover, as shown by computer studies
[23], the presence of extremely long confining channels
with nonslip walls results in over-damped longitudinal
modes dominating the VAF at long times, causing it to
decay algebraically from below. The index of the power
laws for the colloidal hard spheres [13,14] is consistent
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FIG. 4 (color online). A semilog plot of the absolute value of
the VAF near the freezing volume fraction (symbols are defined
in the legend) for both single component (open symbols) and
binary systems (filled symbols). The squares are below �f, the
circles are nominally at �f, and the triangles are just above �f.
The binary data is shifted to the right by 1.5 on the time scale for
clarity.
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FIG. 5 (color online). A double logarithmic plot of the abso-
lute value of the velocity autocorrelation function for a range of
hard-sphere binary mixtures. For clarity, successive volume
fractions have been shifted along the time axis by half a decade.
A power law with exponent 5=2 is also shown for the highest
volume fraction.
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with these studies. However, the index of the power law
observed in the present work, � � 2:5, coincides with the
index for the negative tail of a three dimensional Lorentz
gas [24].

Dynamical heterogeneities (which are both spatial and
temporal in character) in under-cooled liquids have been
observed in both simulations [25] and experiments [26]
(for a review see Richert [27]). The spatial character of the
heterogeneities manifests itself in multiple regions, which
occupy a portion of the system’s volume. On an appropri-
ate time scale the particles inside these regions are immo-
bile while the particles outside them are mobile. It is an
interesting question as to whether these immobile regions
play a similar role to the fixed scatterers of a Lorentz gas
resulting in the � � 2:5 power law observed here. The
classical ��3=2 tail requires local collective, linear momen-
tum conservation combined with purely transverse mo-
mentum decay [18]. The dynamical heterogeneities are
present over a longer time scale than the VAF can be
discerned from the noise. Thus it is likely that the exchange
of momentum between the mobile particles and the immo-
bile regions is responsible for the breakdown of the clas-
sical ��3=2 tail.

We conclude that for the hard-sphere fluid in thermody-
namic equilibrium the long-time decay of the VAF can be
described in terms of incompressible viscous flow leading
to the emergence of the positive ��3=2 tail. Our equilibrium
simulations confirm this to be the case despite the fluid’s
elasticity. However, interestingly at the freezing point and
in the under-cooled fluid the elasticity becomes so strong
that the long-time tail associated with viscous flow can no
longer be observed. This is probably due to the emergence
of long-lived structural heterogeneities, which decay on a
much slower time scale than the VAF. It may be that the
slower decaying ��3=2 tail reemerges at amplitudes too
08780
small for us to discern from the statistical noise.
However, the dramatic decay in the amplitude of the
��3=2 tail, upon approaching freezing as shown in Fig. 3,
demonstrates that it is, at most, exceedingly small, and
leaves open the possibility that it may indeed vanish at
freezing.
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