10 research outputs found

    Production of high levels of poly-3-hydroxybutyrate in plastids of Camelina sativa seeds

    Get PDF
    Poly-3-hydroxybutyrate (PHB) production in plastids of Camelina sativa seeds was investigated by comparing levels of polymer produced upon transformation of plants with five different binary vectors containing combinations of five seed-specific promoters for expression of transgenes. Genes encoding PHB biosynthetic enzymes were modified at the N-terminus to encode a plastid targeting signal. PHB levels of up to 15% of the mature seed weight were measured in single sacrificed T1 seeds with a genetic construct containing the oleosin and glycinin promoters. A more detailed analysis of the PHB production potential of two of the best performing binary vectors in a Camelina line bred for larger seed size yielded lines containing up to 15% polymer in mature T2 seeds. Transmission electron microscopy showed the presence of distinct granules of PHB in the seeds. PHB production had varying effects on germination, emergence and survival of seedlings. Once true leaves formed, plants grew normally and were able to set seeds. PHB synthesis lowered the total oil but not the protein content of engineered seeds. A change in the oil fatty acid profile was also observed. High molecular weight polymer was produced with weight-averaged molecular weights varying between 600 000 and 1 500 000, depending on the line. Select lines were advanced to later generations yielding a line with 13.7% PHB in T4 seeds. The levels of polymer produced in this study are the highest reported to date in a seed and are an important step forward for commercializing an oilseed-based platform for PHB production

    Acrylates via Metathesis of Crotonates

    No full text
    Crotonic acid has the potential to be produced from renewable resources at low cost but currently has a limited market. We are investigating catalytic routes to exploit the functionalities of crotonic acid to produce a range of established industrial chemicals. Here we report our work on converting crotonates to acrylates, where a cost-competitive bio-based alternative can provide a market advantage. Our optimized reaction conditions for the cross-metathesis between crotonates and ethylene resulted in an increase in catalyst turnover numbers by 2 orders of magnitude compared with literature values. Control experiments showed the cross-metathesis with ethylene to be an equilibrium reaction. The turnover-number-limiting factor was found to be the stability of the metathesis catalyst

    YfcX Enables Medium-Chain-Length Poly(3-Hydroxyalkanoate) Formation from Fatty Acids in Recombinant Escherichia coli fadB Strains

    No full text
    Expression of Escherichia coli open reading frame yfcX is shown to be required for medium-chain-length polyhydroxyalkanoate (PHA(MCL)) formation from fatty acids in an E. coli fadB mutant. The open reading frame encodes a protein, YfcX, with significant similarity to the large subunit of multifunctional β-oxidation enzymes. E. coli fadB strains modified to contain an inactivated copy of yfcX and to express a medium-chain-length synthase are unable to form PHA(MCL)s when grown in the presence of fatty acids. Plasmid-based expression of yfcX in the FadB(−) YfcX(−) PhaC(+) strain restores polymer formation. YfcX is shown to be a multifunctional enzyme that minimally encodes hydratase and dehydrogenase activities. The gene encoding YfcX is located downstream from yfcY, a gene encoding thiolase activity. Results of insertional inactivation studies and enzyme activity analyses suggest a role for yfcX in PHA monomer unit formation in recombinant E. coli fadB mutant strains. Further studies are required to determine the natural role of YfcX in the metabolism of E. coli

    High Levels of Bioplastic Are Produced in Fertile Transplastomic Tobacco Plants Engineered with a Synthetic Operon for the Production of Polyhydroxybutyrate1[C][OA]

    No full text
    An optimized genetic construct for plastid transformation of tobacco (Nicotiana tabacum) for the production of the renewable, biodegradable plastic polyhydroxybutyrate (PHB) was designed using an operon extension strategy. Bacterial genes encoding the PHB pathway enzymes were selected for use in this construct based on their similarity to the codon usage and GC content of the tobacco plastome. Regulatory elements with limited homology to the host plastome yet known to yield high levels of plastidial recombinant protein production were used to enhance the expression of the transgenes. A partial transcriptional unit, containing genes of the PHB pathway and a selectable marker gene encoding spectinomycin resistance, was flanked at the 5′ end by the host plant’s psbA coding sequence and at the 3′ end by the host plant’s 3′ psbA untranslated region. This design allowed insertion of the transgenes into the plastome as an extension of the psbA operon, rendering the addition of a promoter to drive the expression of the transgenes unnecessary. Transformation of the optimized construct into tobacco and subsequent spectinomycin selection of transgenic plants yielded T0 plants that were capable of producing up to 18.8% dry weight PHB in samples of leaf tissue. These plants were fertile and produced viable seed. T1 plants producing up to 17.3% dry weight PHB in samples of leaf tissue and 8.8% dry weight PHB in the total biomass of the plant were also isolated

    Correction to Biobased <i>n</i>‑Butanol Prepared from Poly-3-hydroxybutyrate: Optimization of the Reduction of <i>n</i>‑Butyl Crotonate to <i>n</i>‑Butanol

    No full text
    Correction to Biobased <i>n</i>‑Butanol Prepared from Poly-3-hydroxybutyrate: Optimization of the Reduction of <i>n</i>‑Butyl Crotonate to <i>n</i>‑Butano

    Factors affecting polyhydroxybutyrate accumulation in mesophyll cells of sugarcane and switchgrass

    No full text
    Background: Polyhydroxyalkanoates are linear biodegradable polyesters produced by bacteria as a carbon store and used to produce a range of bioplastics. Widespread polyhydroxyalkanoate production in C-4 crops would decrease petroleum dependency by producing a renewable supply of biodegradable plastics along with residual biomass that could be converted into biofuels or energy. Increasing yields to commercial levels in biomass crops however remains a challenge. Previously, lower accumulation levels of the short side chain polyhydroxyalkanoate, polyhydroxybutyrate (PHB), were observed in the chloroplasts of mesophyll (M) cells compared to bundle sheath (BS) cells in transgenic maize (Zea mays), sugarcane (Saccharum sp.), and switchgrass (Panicum virgatum L.) leading to a significant decrease in the theoretical yield potential. Here we explore various factors which might affect polymer accumulation in mesophyll cells, including targeting of the PHB pathway enzymes to the mesophyll plastid and their access to substrate
    corecore