171 research outputs found

    MMP-9 cleaves SP-D and abrogates its innate immune functions in vitro

    Get PDF
    Possession of a properly functioning innate immune system in the lung is vital to prevent infections due to the ongoing exposure of the lung to pathogens. While mechanisms of pulmonary innate immunity have been well studied, our knowledge of how these systems are altered in disease states, leading to increased susceptibility to infections, is limited. One innate immune protein in the lung, the pulmonary collectin SP-D, has been shown to be important in innate immune defense, as well as clearance of allergens and apoptotic cells. MMP-9 is a protease with a wide variety of substrates, and has been found to be dysregulated in a myriad of lung diseases ranging from asthma to cystic fibrosis; in many of these conditions, there are decreased levels of SP-D. Our results indicate that MMP-9 is able to cleave SP-D in vitro and this cleavage leads to loss of its innate immune functions, including its abilities to aggregate bacteria and increase phagocytosis by mouse alveolar macrophages. However, MMP-9-cleaved SP-D was still detected in a solid-phase E. coli LPS-binding assay, while NE-cleaved SP-D was not. In addition, MMP-9 seems to cleave SP-D much more efficiently than NE at physiological levels of calcium. Previous studies have shown that in several diseases, including cystic fibrosis and asthma, patients have increased expression of MMP-9 in the lungs as well as decreased levels of intact SP-D. As patients suffering from many of the diseases in which MMP-9 is over-expressed can be more susceptible to pulmonary infections, it is possible that MMP-9 cleavage of SP-D may contribute to this phenotype

    Recyclability of stainless steel (316L) powder within the additive manufacturing process

    Get PDF
    Using recycled powder during the additive manufacturing processes has been a matter of debate by several research groups and industry worldwide. If not significantly different from the feedstock, the recycled powder can be reused many times without a detrimental impact on the mechanical properties of the final printed parts, which reduces the metallic powder waste and printing time. A detailed characterization and comparison of the feedstock and recycled powders is essential in order to understand the number of times a powder can be recycled. The recycled powders were sampled after 10 times reuse in the Powder Bed Fusion (PBF) process in the 3D printer. In this paper, we have performed a detailed characterization on morphology, microstructure, and the surface and bulk composition of virgin feedstock and recycled stainless steel 316 L powders (over 10 times reused), and correlated these measurements to topography, nanoindentation and hardness tests. We have also performed rarely reported synchrotron surface characterization of both powder sets in order to measure the level of oxidation of the individual metallic elements present in the virgin and recycled steel powder and the way such chemical composition changes following use in the manufacturing process. The results show more satellite and bonded particles in the recycled powder although the particle size is not broadly impacted. The atomic force microscopy results showed a smaller roughness on recycled powders measured on surfaces without satellites which might be due to less surface dendrites on recycled powder surface. Finally, a higher hardness was measured for the recycled powder resulted from the manufacturing process on grains and chemical composition. The results suggest no significant changes on the mechanical properties of the printed parts depending for a certain number of reusing cycles

    Sustained desensitization to bacterial Toll-like receptor ligands after resolutionof respiratory influenza infection

    Get PDF
    The World Health Organization estimates that lower respiratory tract infections (excluding tuberculosis) account for ∼35% of all deaths caused by infectious diseases. In many cases, the cause of death may be caused by multiple pathogens, e.g., the life-threatening bacterial pneumonia observed in patients infected with influenza virus. The ability to evolve more efficient immunity on each successive encounter with antigen is the hallmark of the adaptive immune response. However, in the absence of cross-reactive T and B cell epitopes, one lung infection can modify immunity and pathology to the next for extended periods of time. We now report for the first time that this phenomenon is mediated by a sustained desensitization of lung sentinel cells to Toll-like receptor (TLR) ligands; this is an effect that lasts for several months after resolution of influenza or respiratory syncytial virus infection and is associated with reduced chemokine production and NF-κB activation in alveolar macrophages. Although such desensitization may be beneficial in alleviating overall immunopathology, the reduced neutrophil recruitment correlates with heightened bacterial load during secondary respiratory infection. Our data therefore suggests that post-viral desensitization to TLR signals may be one possible contributor to the common secondary bacterial pneumonia associated with pandemic and seasonal influenza infection

    Thermal and plasma enhanced atomic layer deposition of ultrathin TiO2 on silicon from amide and alkoxide precursors: growth chemistry and photoelectrochemical performance

    Get PDF
    Due to its low cost and suitable band gap, silicon has been studied as a photoanode material for some time. However, as a result of poor stability during the oxygen evolution reaction (OER), Si still remains unsuitable for any extended use. Ultra-thin titanium dioxide (TiO2) films have been used as protective coatings and are shown to enhance Si photoanode lifetime with added solar to hydrogen performance improvements through distancing the oxidation reaction away from the Si photoanode surface and improved charge transport through the anode. This study details the nucleation, growth chemistry, and performance of TiO2 thin films prepared via thermal and plasma enhanced atomic layer deposition (ALD) using both titanium isopropoxide and tetrakis(dimethylamido)titanium as the precursor material. The effect of post ALD treatments of plasma and air annealing was also studied. Films were investigated using photoelectrochemical cell testing to evaluate photoelectrochemical performance, and in-vacuum cycle-by-cycle x-ray photoelectron spectroscopy was used as the primary characterisation technique to study nucleation mechanisms and film properties contributing to improvements in cell performance. TiO2 grown by plasma enhanced ALD results in cleaner films with reduced carbon incorporation. However, despite increased carbon incorporation, thermally grown films showed improved photocurrent as a result of oxygen vacancies in these films. Post deposition annealing in a H2 ambient is shown to further improve photocurrent in all cases, while annealing in atmosphere leads to uniform film chemistry and enhanced photocurrent stability in all cases

    A new method for assessing the recyclability of powders within Powder Bed Fusion process

    Get PDF
    Recycling metallic powders used in the additive manufacturing (AM) process is essential for reducing the process cost, manufacturing time, energy consumption, and metallic waste. In this paper, the focus is on pore formation in recycled powder particles of stainless steel 316L during the selective laser melting process. We have introduced the concept of optimizing the powder bed's printing area in order to see the extent of the affected powders during the 3D-printing process. X-ray Computed Tomography (XCT) is used to characterize the pores inside the particles. The results from image processing of the tomography (rendered in 3D format) indicate a broader pore size distribution and a higher pore density in recycled powders compared to their virgin counterparts. To elucidate on this, the Electron Dispersion spectroscopy (EDX) analysis and Synchrotron-based Hard X-ray Photoelectron Spectroscopy (HAXPES) were performed to reveal the chemical composition distribution across the pore area and bulk of the recycled powder particles. Higher concentrations of Fe, Cr, and Ni were recorded on the interior wall of the pore in recycled particles and higher Mn, S and Si concentrations were recorded in the outer layer around the pore area and on the surface of the recycled particle. The pore formation in recycled powder is attributed to out-diffusion of Mn, S and Si to the outer surface as a result of the incident laser heat during the AM process due to higher electron affinity of such metallic elements to oxygenation. HAXPES analysis shows a higher MnO concentration around the pore area which impedes the in-diffusion of other elements into the bulk and thereby helps to creates a void. The inside wall of the pore area (dendrites), has a higher concentration of Fe and Cr oxide. We believe the higher pore density in recycled powders is due, at least in part to composition redistribution, promoted by laser heat during the AM process. Nanoindentation analyses on both virgin and recycled powder particles shows a lower hardness and higher effective modulus in the recycled powder particles attributed to the higher porosity in recycled powders

    ERS International Congress 2023:highlights from the Airway Diseases Assembly

    Get PDF
    In this review, early career and senior members of Assembly 5 (Airway Diseases, Asthma, COPD and Chronic Cough) present key recent findings pertinent to airway diseases that were presented during the European Respiratory Society International Congress 2023 in Milan, Italy, with a particular focus on asthma, COPD, chronic cough and bronchiectasis. During the congress, an increased number of symposia, workshops and abstract presentations were organised. In total, 739 abstracts were submitted for Assembly 5 and the majority of these were presented by early career members. These data highlight the increased interest in this group of respiratory diseases.</p

    Hard X-ray photoelectron spectroscopy study of copper formation by metal salt inclusion in a polymer film

    Get PDF
    In this work we present the results of a Hard X-ray Photoelectron Spectroscopy (HAXPES) study on the creation of metallic copper layers via metal-salt infiltration into a poly-2-vinylpyridine (P2VP) film. Metal salt inclusion is a wet chemistry process which allows for the fabrication of both metal and metal oxide films by means of infiltrating a receptive polymer thin film with metal salt precursors. A copper infiltrated P2VP film was subject to UV/Ozone treatment to form copper oxide and annealed in-vacuo to reduce the film to metallic copper. HAXPES and transmission electron microscope (TEM) measurements were used to study the polymer film before and after metal salt infiltration, along with analysis of the copper oxide created after UV/Ozone treatment. The results show successful infiltration of the metal salt into the polymer film, as well as complete conversion to copper oxide following UV/Ozone treatment and reduction to metallic copper with a subsequent in-situ anneal, which demonstrates the ability of the technique for the creation of several key integrated circuit features

    Analysing trimethylaluminum infiltration intopolymer brushes using a scalable area selectivevapor phase process

    Get PDF
    Developing vapor phase infiltration (VPI) processes for area selective polymer nanopatterning requires substantial advancement in understanding precursor infiltration, precursor–polymer interaction and process parameters. In this work, infiltration receptive poly(2-vinylpyridine) (P2VP) and poly(4-vinylpyridine) (P4VP) brushes were exposed to a trimethylaluminum (TMA) VPI process and compared toa non-receptive polystyrene (PS) system. The interaction that takes place between TMA and P2VP/P4VPwas analysed in detail and we report on notable advantages in the use of P4VP, arising from the difference in position of the pyridinic nitrogen. The VPI process was performed in a commercial atomic layer deposition reactor and the effects of the fundamental process parameters on the three polymer brushes were investigated to ensure optimal area selectivity. In situX-ray photoelectron spectroscopy (XPS) measurements were supported by grazing angle Fourier transform infrared spectroscopy (GA-FTIR)and hard X-ray photoelectron spectroscopy (HAXPES). The report identifies several important factors when developing a VPI process to ensure area selectivity, while also demonstrating the use of novel pyridine containing polymers for VPI area selective purposes
    corecore